Walter Youngquist: Geodestinies Exponential growth

Preface. I was fortunate enough to know Walter for 15 years. He became a friend and mentor, helping me learn to become a better science writer, and sending me material I might be interested in, and delightful pictures of him sitting in a lawn chair and feeding wild deer who weren’t afraid of him. I thought his book Geodestinies: The Inevitable Control of Earth Resources over Nations and Individuals, published in 1997, was the best overview of energy and natural resources ever written, and encouraged him to write a second edition. He did try, but he spent so much time taking care of his ill wife, that he died before finishing it. I’ve made eight posts in Experts/Walter Youngquist of just a few topics from the version that was in progress when he died at 96 years old in 2018 (500 pages).

Other Youngquist Geodestinies Posts:

Alice Friedemann  author of “Life After Fossil Fuels: A Reality Check on Alternative Energy“, 2021, Springer; “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer; Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

* * *

World population continues to grow and all our economic systems are based on growth. What politician or business is against growth? “Growth is the Santa Claus,” which presumably is used to solve economic problems (Laherrere, 2004). But growth is the creed of the cancer cell, which eventually destroys its host, and ultimately itself. As Albert Bartlett has told us repeatedly, “sustainable growth is an oxymoron.” A brief note in Science, April 7, 2006, reports that about 95 million hectares of arable land in Africa have been degraded to the point where they are virtually nonproductive. Population destroyed the environment, and imported food supplies cannot solve the problem indefinitely. Populations there must not only stop growing, but must shrink if that environment is ever to be restored to productivity.

At the current rate of consumption is often used as a comforting phrase to assure the public that “at the current rate of consumption,” a given resource will last for at least X number of years – usually, this is quite a long time. The fallacy is that “the current rate of consumption” does not continue into the future. The rate of consumption almost always increases. The increase in resource consumption is due to three factors: (1) population growth, (2) demand for an increase in per capita consumption of a resource to raise living standards, and (3) discussing a larger number of uses for a given resource.

A resource may have a life of 100 years at the current rate of consumption. But, at a seemingly low rate of a five percent annual increase in demand, the resource will only last about 36 years.

One example of such a statement regarding world oil reserves was made on a popular TV investment program (Wall Street Week, 1996). It was that current supplies were enough to last us for 40 years “at the current consumption rates.” This statement is misleading for two reasons. First, current consumption rates are transitory. Demand for oil will continue to increase as population increases. Second, if the statement were taken literally, it would mean that for 40 years, we would have the same amount of oil available as we have today. But in the 41st year, there would be none. This also has no relation to reality.

Far more energy and mineral resources have been used in the world since 1900, than over all previous time. In the case of oil, the first 200 billion barrels of oil in the world were consumed between 1859 and 1968, but it only took the following 10 years to consume the second 200 billion barrels. Now 200 billion barrels of oil are just a six and one-half year supply. We have used the first trillion barrels of oil during the past 125 years. We will use the next trillion in 30 years. Then what?

To illustrate how fast the human population target moves, and the inability of material resources to keep up with the demand from such growth, the late geochemist Harrison Brown (1978) calculated that if world population continued to increase at the rate of two percent annually, in two thousand years, the Earth would be a solid mass of people expanding out into the universe at the speed of light. In just six hundred years (not really long in terms of human history), the Earth would pass the standing room only situation of five square feet per person, covering both the continents and the oceans. This is what “only a two percent growth rate” means.

In a finite world, moral behavior must recognize both physical and biological constraints. Because modern man is rapidly exploiting the natural wealth that took the Earth millions of years to create, the evidence is mounting that a rapid environmental decline is now occurring on a global scale…. Hence it becoming more and more urgent that ethical theory be grounded in the environmental principle…. It will require that the human population be reduced to numbers that the renewable resources of the Earth can support (Elliott, 2005).

The Earth’s riches accumulated from geological events over millions of years have, in a brief three hundred years, been significantly depleted through mines as deep as 10,000 feet, oil extracted from below 16,000 feet, and gas produced from depths below 20,000 feet. Aquifers are being depleted faster than they can be recharged. Soil is being lost many times faster than nature can replace it. This has brought us to the brink of a third turning point. Succeeding human populations will cope with a permanently reduced resource base. For the first time, the Earth will provide humanity with a future of less. The human response to this reality could be orderly or it could usher in an age of social and economic chaos.

Natural resources will continue to control the destinies of nations and individuals. This is hardly a profound statement, for what else do we have to live on? It is the irregular distribution of the Earth’s resources and how nations have or have not been able to exploit them that cause the great differences we now see in nations’ social and economic structures.

Earth materials and energy sustain industrialized nations. But we have been using these resources at an unsustainable exponential rate. Hughes (2007) studied energy supply issues, and points out that 50 percent of all oil consumed has been used since 1984, and 90 percent of all oil consumed has been used since 1958.

Through its very success in extracting nonrenewable resources from the Earth (minerals and fossil fuels), industrial society possesses the seeds of its own destruction. We have used more of these vital Earth resources in the past 60 years in all previous Earth history.

Posted in Exponential Growth, Walter Youngquist | Tagged , , | Leave a comment

Walter Youngquist: Geodestinies Minerals

Preface. I was fortunate enough to know Walter for 15 years. He became a friend and mentor, helping me learn to become a better science writer, and sending me material I might be interested in, and delightful pictures of him sitting in a lawn chair and feeding wild deer who weren’t afraid of him. I thought his book Geodestinies: The Inevitable Control of Earth Resources over Nations and Individuals, published in 1997, was the best overview of energy and natural resources ever written, and encouraged him to write a second edition. He did try, but he spent so much time taking care of his ill wife, that he died before finishing it. I’ve made eight posts in Experts/Walter Youngquist of just a few topics from the version that was in progress when he died at 96 years old in 2018 (500 pages).

Other Youngquist Geodestinies Posts:

Alice Friedemann  author of “Life After Fossil Fuels: A Reality Check on Alternative Energy“, 2021, Springer; “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer; Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

* * *

Political risks of depending on other nations for oil, metals, and minerals

As countries such as Great Britain and the United States industrialized, initially most raw materials needed were available within the country. But gradually, these resources were depleted and the companies producing these resources had to go abroad to less developed countries for raw materials. Many of these governments were, and remain, to be unstable. The degree of risk depends on the relative stability of governments and the politics within these countries. A continuing civil war is not helpful to oil or mining operations: examples being Angola, Colombia, and Nigeria. The risks can be enormous, and range from the destruction of the resource producer’s equipment, kidnapping or murder of company workers, and the expropriation of company assets without compensation. Contracts made by one political regime may be invalidated by a succeeding political regime. Or the same governing group may simply change its mind and not honor a contract.

The easy oil and other minerals have been found. Most of the surface of the Earth has been mapped geologically. Mineral resources that are readily apparent have been developed for the most part. The early prospectors quickly found the rich mineral deposits exposed at the surface. In many cases, these were small operations, but the quality of ore was such that relatively little work could yield great wealth. And so the easily found, rich mineral deposits were soon exploited. In

In the case of petroleum, oil and gas seeps originally indicated the presence of easily discovered and inexpensively drilled shallow oil and gas fields. Now the oil industry must find anticlinal oil traps at great depth, or find much more subtle oil traps such as a lens of sand of a delta finger at a depth of 10,000 to 15,000 feet, or locate a buried ancient coral reef with no surface expression.

The same circumstances apply to metals and other hard minerals. Native copper (that is, pure) discovered in the Upper Peninsula of Michigan was the beginning of the great copper industry of the United States. Anyone could see this copper in large quantities in the “Great Conglomerate.” In prehistoric times, native Americans dug more than 10,000 pits to produce this copper, which became a major trade item up and down the entire Mississippi River Valley. It took no skill to find the copper, and, because it was pure copper, it was easy to use.

United States copper is now produced from a tough, fine-grained igneous rock (quartz monzonite) containing only specks of a copper mineral, not pure copper. The quality (tenor) of the ore is as low as four-tenths of one percent. This means that a ton of rock has to be blasted out, crushed, milled (upgraded by various processes), smelted, and eventually put through an electrolytic process to obtain just eight pounds of copper. It takes a huge and expensive facility to do this.

If the mineral deposit occurs in veins and is and too deep to mine by the open pit method, shafts must be sunk. Underground operations must be pumped free of water that continually floods in, huge fans must be installed to ventilate the mine, and the mine must be electrified. A variety of mine safety devices must be installed. Trying to follow veins of ore through the various complex rock structures that control the ore is difficult and expensive.

Because of all these factors, estimates are that it takes the work of seven men underground to produce the same amount of ore as one man working a surface mine. Today there are mines two miles deep in operation. At such depths, the natural heat gradient of the Earth necessitates that the mine be air-conditioned. Also, because of the great pressure of the overlying rocks, violent rock bursts may occur. Rocks simply burst out of the sides of the mine. They are unpredictable, smashing ore cars and killing miners.

So mining is hazardous and insurance and other costs are high. In the case of underground mines, fluctuating metal prices are a special economic hazard. Unlike surface mining operations, which simply can be shut down if the price of a metal temporarily drops below its production cost, an underground mine must be constantly maintained. The main problem is groundwater, which must be continually pumped out. The mine also has to be kept reasonably dry to prevent the hoisting and other equipment from being damaged, and to provide proper working conditions for the miners.

With the obvious, easily reached deposits of minerals already discovered and developed, the search for minerals today involves looking beneath the ocean floor to find an oil or gas trap many thousands of feet below. Or it could be exploring for deposits beneath the muskeg swamps of Canada or under thick jungle cover in Brazil or New Guinea. If a mineral exploration company is formed, there is no assurance whatever that anything of value will be ever found. Too many consecutive dry holes have put many a fledgling oil company out of business.

A friend told of drilling in the Denver-Julesburg Basin of eastern Colorado. It is a deltaic complex where winding channel sands are the productive structures. The first well drilled was moderately successful. So he drilled an offset well — which was dry, then another offset, also dry, and then two more offset wells, all dry. The amount of oil produced from the first well did not pay the cost of drilling the offset wells. He said if he had drilled one of the dry holes first and given up, he would have been better off financially. Fortunately, he had other resources and survived, but many others in similar situations do not. Drilling is now going deeper and is more expensive. Metal deposits are also far more difficult to find and develop. The time of the small wildcat driller and the lone prospector is largely gone. It takes major company resources to survive repeated failed exploration experiences, some of which cost many millions of dollars. A Scottish firm, Cairn Energy, recently spent $600 million on exploratory drilling in the Arctic and found no oil.

Myth: One mineral/metal can freely and equally replace another

Reality: As we enter the age of depleting resources, both in quality and quantity, there is a view that one metal can freely and equally replace another. This is a carryover of ancient attempts at alchemy, the classic effort to change lead into gold. But the myth persists. The late economist, Julian Simon, carried it to the extreme when he said, “Copper can be made from other metals.” In long-distance electrical transmission lines, aluminum is now being used instead of copper because aluminum is cheaper and lighter weight. In making this substitution, some efficiency is lost because aluminum does not transmit electricity as efficiently as copper does. Each metal has its own distinct physical and chemical properties. Molybdenum makes steel tough so it can be rolled out in sheets and not crack. But within the alloy, molybdenum does not replace steel, it simply adds a quality to it. Similarly with nonmetals, every living cell has to have potassium and phosphorus for which there are no substitutes. (Indeed, when one substance does substitute for another in the body, it is typically a poison or a toxin!) There is no genuine substitute for oil in its many uses. As we face the depletion of the Earth’s resources, there may be limited substitutes for some minerals, but each resource has qualities not found in any other.

Length of time to begin to get return on investment

Another factor common to all mineral ventures is that it takes a good deal of time to realize any income even from a successful project. Time is almost always measured in years. In the case of the Prudhoe Bay Oil Field, it was twenty years from the time when the first exploration money was spent just to the time of drilling the discovery well in 1967. On June 20, 1977, The Anchorage Times carried the headline, “First Oil Flows (After 8 years, 4 months, 10 days).” Actually, after the discovery, it was nearly 10 years before oil was sent down the pipeline and income could begin to be generated from the wells.

The huge Hibernia oil field project off the east coast of Canada took almost two decades to develop. One problem was to build a big enough and strong enough drilling platform to resist the icebergs that frequently float down iceberg alley where the offshore Hibernia field is located. By the time the platform was in place and production began, the various project participants had invested a total of more than six billion dollars (U.S.), which had not earned a penny in interest for a period of about 20 years.

Individuals do not have such large sums of money to invest, nor can they wait many years for a return on their investment. It requires large corporations to take on such longterm risk ventures, carry them to completion, and put gasoline in the world’s automobiles.

For mining operations, the average time from discovery of the prospect to production is about seven years. Previously there were costs of exploration. It may have taken many years just to find the prospect. Then add seven years cost of drilling; building the mills to crush the ore; building other facilities, including roads and housing for the workers; supply lines to support continuing operations; and arrange for transportation of the product. There are increasing financial and time costs for environmental studies, compliance, regulations, and mitigations. These are important and necessary, and their absence in earlier times is still reflected in major scars on the landscape and in streams still polluted from long-abandoned operations. But, complying with regulations is a cost that must be paid to obtain the mineral product.

Time is a factor in mineral economics, because until production starts, all the money invested earns nothing. Money has a time value. For example, if all costs from the beginning of exploration to bringing the mine to production means that $100 million has to be invested for a total of ten years, that $100 million must either be borrowed for ten years at the going rate of interest, provided by earnings from other projects, or supplied by stockholders who buy the stock in hopes of eventually getting a reasonable return for their risk investment. And they may lose it all if the project fails.

The time lag from discovery to full development and the beginning of getting a return on capital investment in a mineral deposit (including petroleum) differs widely depending on a variety of factors, such as accessibility to the resource and the infrastructure needed for profitable production (such as pipelines onshore or undersea and plants for milling and smelting metal ores).

Bringing an oil field into full development may take as long as 40 years. Metal deposits usually take less time, but in all cases, the return on invested capital is substantially slower than in other industrial enterprises. One of the problems is predicting the price of the product over the life of the project. Price changes beyond those anticipated may make the venture uneconomic or in some cases, very profitable.

Investors who buy the stock, or the company itself, could have invested their money in some income-producing instrument such as a bank deposit or a bond and earned an immediate income. Instead, their money was spent trying to develop a mineral prospect that not only has to earn a current return, but also make up for the years when the money earned nothing.

Cameron (1986) puts the situation in perspective: Part of the current American attitude toward mining is a carryover from the 19th century, when there were spectacular successes in some districts of the West. Mining became identified as a quick source of easy profits. Those days are long since gone, although there was a brief revival during the uranium boom in the late 1940s and 1950s. Mining today is a highly competitive industry, in which profit margins are low. It is capital-intensive, yet the profit margins and the long lead times between discovery and first production make it difficult to attract capital funds in competition with other industries in which returns on investment are higher and can be realized in much shorter periods of time.

Mineral resources are nonrenewable

The mineral industry differs from other basic wealth-producing activities such as farming, fishing, hunting, and forestry in that minerals are non-renewable. The average metal mine life is seven to ten years. Oil may first flow from a well from its own pressure. Then it has to be pumped. During production, the field usually has to be repressured by water-flooding or gas injection. Finally, all oil fields are abandoned. Each pound of copper produced and each barrel of oil produced puts the company involved a bit closer to being out of business, unless some of the money earned from current production is set aside to pay exploration costs to find more resources. A new crop of corn may be grown each year to replace the crop produced the year before, but fossil fuels and minerals are one-crop situations.


The seventh but very important factor in mineral development, and one completely under the control of people, is taxes. Since money has time value, it is to the advantage of any company to write off expenses in the year in which they occur. Oil and mining companies are no different. But some tax jurisdictions do not allow this, instead requiring that it be done over a period of several years. Another aspect of taxes is that companies are commonly taxed on plants and equipment, and also on proved reserves. This means that the tax bill increases if exploration to prove up reserves gets very far ahead of production needs. Taxing reserves discourages exploration.

At one time, Britain levied taxes as high as 90 percent on the income oil companies received from British North Sea oil production. This left very little for companies to reinvest in further exploration in this high-cost area, and firms began to reduce operations. Recognizing this, the British government since reduced its taxes on North Sea but still taxes them very heavily. There are some smaller fields in the North Sea that could be found and developed if taxes were lower. At present, only large fields with relatively few wells are economic to develop. As these fields are depleted, Britain will have to make a decision to reduce taxes or import even more oil. To date, North Sea oil fields have been milked very heavily by British taxes. Metal mining also tends to be a cash cow for both federal and local governments, with total taxes commonly taking 50 percent or more of gross income. Local governments frequently expand their political boundaries to include mining and oil properties into their tax base.

In less politically stable countries, taxes can and infrequently are changed on a moment’s notice by the action of the person in charge. In 2005, President Hugo Chavez of Venezuela raised royalty payments (taxes) by 16 times on the crude oil from the heavy oil Orinoco region. The same year the Russians charged back taxes on a joint oil operation between British Petroleum (BP) and a Russian company, TNK. The assessment was $936 million.

Price estimations and hazards Increasingly, companies in industrialized countries have to search abroad for natural resources. Political volatility in many countries makes the work of the producers of our basic mineral and energy needs rather difficult. Some understanding of the long-range planning that goes into resource development, and the need for a stable economic environment in which to do this is frequently absent among both the public and the politicians in the countries in which the companies operate.

Mining and public lands in the United States

There has been considerable controversy over the 1872 Mining Law, which allows public lands to be claimed and become private property for the production of minerals. In earlier times, obtaining public lands this way was easy and no doubt abused. Recently, however, requirements for claiming lands have become much stricter, and it has become much more difficult to patent public lands. In 1989, for example, only 43 claims were granted and most of them went to Native American tribes through land settlements in Alaska. At present, it is necessary to prove without reasonable doubt that a mineral deposit of value exists before the land can be claimed. To do this an expenditure of between a half a million and a million dollars must ordinarily be spent on each claim. A claim is 600 feet by 1500 feet. A placer claim, one on sand and gravel deposits, is 660 by 1320 feet. Subsequent to obtaining a deed, many millions must be spent in developing the property. Also, no other industry in the U.S. is covered by more stringent federal, state, and local permitting, safety, reclamation, and environmental laws.

By way of example, a recently proposed underground uranium mine on the Cibola National Forest in western New Mexico needed the following studies, reviews, permits, and approvals: 1) several million dollars spent on baseline environmental studies, including surface water, groundwater, cultural resources, vegetation, wildlife, soils, geology, and air quality; 2) a million dollar Environmental Impact Statement; 3) approval of its Plan of Operations by the U.S. Forest Service; 4) consultation with five American Indian tribes and other “consulting parties” under provisions of the National Historic Preservation Act; 5) ethnographic studies prepared by the tribes but funded by the mining company; 6) application for a Discharge Permit by the New Mexico Environment Department; 7) application for a Mine Dewatering Permit from the New Mexico Office of the State Engineer; 9) application for a New Mine Permit from the New Mexico Mining and Minerals Division; and 10) application for a National Pollutant Discharge Elimination System (NPDES) permit from the U.S. Environmental Protection Agency.

In the past 20 years, the American mining industry has spent more than $15 billion to comply with environmental procedures and regulations. From these operations come the materials for making the things used by everyone: cars, trucks, roads, houses, factories, office buildings, home appliances, and myriad other products in everyday use. The bottom line is that mining is an important part of the U.S. economy, but even when public lands are claimed and owned by mining companies, the industry remains one of relatively low profitability. If public lands require payment of a royalty to the government on minerals produced, that cost ultimately will be borne by the consumer, the general public.

The oil industry and land Initially, in the United States, most oil drilling took place on private lands where the mineral rights were held by the land owner. This is in contrast to the rest of the world where these rights are usually owned by the respective governments. Now in the United States, oil development increasingly is going offshore where mineral rights are owned either by the federal or state governments.

A lot of the strident opposition to resource developments fails to consider that if these were shut down and did not exist, the human race would still be close to living in caves, and heating only with wood.

Human Health and Minerals

There is evidence from the geographic distribution of thyroid disease, hypertension, arteriosclerosis, cancer, tooth decay, and from several diseases of animals that a definite relationship exists between the geochemistry of the Earth in those places, and these medical conditions. Trace elements in human diets are very important. Trace elements are related to regulating the dynamic processes of enzymes, and minute amounts are needed to modify the kinetics of enzyme reactions.

However, excessive amounts of certain minerals can have a negative effect on health. The vegetables grown in New York and Maryland soils are relatively high in iron, manganese, titanium, arsenic, copper, lead, and zinc compared with most other soils. Helen Cannon of the U.S. Geological Survey concluded that the available information suggests a correlation of this fact with the occurrence of certain diseases. Another study in an area known for abnormal concentrations of selenium suggested that high mineralization was a possible factor in an unusual cancer-mortality pattern in that area and has prompted further investigation (Spallholtz, et al., 1981).

Iodine deficiency is one of the most widespread mineral medical problems in the world. Lack of a very minute amount of iodine in the diet can stunt both physical growth and mental ability. Iodine is essential to life. It enables the thyroid gland to produce the hormones necessary to develop and maintain the brain and nervous system. When the levels of thyroid hormones fall, the heart, liver, kidneys, muscles, and endocrine system are all affected adversely. Lack of iodine in the diet of pregnant women can adversely affect their baby. Seafood and food grown in iodine-sufficient soils provide adequate iodine in human diets. It is estimated that about 1.5 billion people in at least 110 countries are threatened by iodine deficiency. The chief regions where deficiency occurs are in mountainous regions and areas prone to frequent flooding, which washes out iodine in the soil.

Selenium is an element that seems to cause and cure a variety of human ailments. A study of 45,000 Chinese reviewed the occurrence of Keshan disease (Faelton, 1981). This is a form of heart disease, mostly affecting children up to the age of eight or nine years. Its symptoms are enlargement of the heart, low blood pressure, and a fast pulse. A high-death rate was clearly related geographically to the amount of selenium in the soil. The disease occurs in a wide band of land running from the northeast coast of China towards the southwestern border of the country. In this area, the soil and crops grown in it are deficient in selenium. Within this region, children given selenium showed a lower incidence of the disease, but it did not diminish in other affected areas where the children were not treated. It was found that, “ … the dramatic responses to Se [selenium] supplementation by individuals suffering from Keshan disease suggest that selenium may yet help mankind overcome two of its most damaging disease conditions” (Spallholz, et al., 1981). The other disease referred to is a form of cancer for which selenium appears to be a useful trace element in treatment.

In the United States, an area along the coastal plain of Georgia and the Carolinas has come to be termed the “stroke belt.” It also has a higher than normal incidence of heart disease. As in China, the area is low in selenium. Although studies are not yet complete, it appears that death rates from a variety of cancers are lower in areas of the United States where local crops take in larger amounts of selenium from the soil. A report from Finland concluded that men with low levels of selenium in the blood were more likely to develop cancers of the lung, stomach, and pancreas. Women also had a marginally higher risk of these ailments, and the report noted that the Finns do not get much selenium in their natural diets.

Too high a concentration of some elements, however, can become a negative health factor. We have just noted that selenium in minute quantities is important to health, but selenium poisoning can occur from an overdose of this element. In late 1988, a general selenium poisoning warning was published by the Sacramento Bee (California) reporting investigations that discovered selenium contamination in the marshes, lakes, and streams, in particular, on the Kesterson National Wildlife Refuge in California’s Central Valley. Large numbers of waterfowl died from selenium poisoning. Fish and game in Wyoming, Colorado, Utah, Montana, and Nevada, as well as California, contained excessive amounts of selenium. Eighty-one percent of the trout, carp, perch, catfish, and goose eggs collected throughout the West exceeded the 200-microgram safety limit and 67 percent were over the 500 level of toxic effect. The samples averaged 974 micrograms, or nearly double the level at which poisoning symptoms begin to appear in healthy human adults.

Products for human consumption were studied and half the foods tested such as steak, liver, poultry, eggs, and vegetables from areas in Oregon, Montana, South Dakota, Nebraska, Wyoming, and Colorado were found to exceed the safe level of 200 micrograms of selenium. The true magnitude of this situation in the western United States has yet to be established, but clues already indicate the problem could be large. However, in spite of all the studies that have been conducted, the precise role of selenium in human health, particularly with relation to heart disease, has still not been conclusively determined. Research continues.

The importance of mineral-rich glacial soils to human longevity was reported by a panel headed by Dr. Howard Hopps, Professor of Pathology at the University of Missouri. The study compared death rates of men ages 35 to 74 in two 100,000 square mile areas. One was in the glaciated Upper Midwest mineral-rich soil and groundwater area, and the other was in the southeastern coastal area of parts of Virginia, the Carolinas, Georgia, and central Alabama. This latter area has a meager supply of minerals in its drinking water and soil. The report found that for every 100 men in this age range who died in a given year in the Upper Midwest region, 200 died in the coastal area. The panel reported that cardiovascular diseases, primarily heart attacks and strokes, accounted for most of the differences in deaths between the two areas. Hopps noted that the Upper Midwest was left rich in minerals and trace elements by the glaciers that “ground up the rocks and made minerals in them available.” These minerals include iron, copper, manganese, fluoride, chromium, selenium, molybdenum, magnesium, zinc, iodine, cobalt, silicon, and vanadium. In the southeast, Hopps found that, “the minerals have been leached out of the soil for millennia.” He also observed that the differences were consistent, stating, “no county in the Minnesota part of the region, for example, was above average in deaths. It seemed to be an inescapable conclusion that a lot of people in the Upper Midwest must be living a lot longer.” The study focused on white men to rule out the possibility of regional racial makeups affecting the results. The study concluded that trace minerals in the soil and water contribute to relative longevity for persons living in this area of glacially transported materials, compared with other areas without these new rocks from which to weather out vital elements into the soil.


Clay, by Suzanne Staubach (2005), writes: The story of our relationship with clay is the story of material culture. It is the story of domesticity and the story of technological advances. The inventions of the wheel and the kiln, the understanding that fire could turn mud to stone, were the foundation for thousands of technologies that have followed.

One of the most important uses of clay has been in the manufacture of pipe, especially sewer pipe. Staubach describes how the Doulton Company that made toilets, also discovered that the nonporous pipe could be useful as sewer pipe that would greatly improve the sanitation of cities. The city fathers of London took to the idea of Doulton’s sewer pipe. It was correctly seen as of great importance and came into wide use.

As useful as it is, clay does have some negatives. Still widely used even as unfired sun-dried adobe brick, it is a weak building material. Earthquakes causing the collapse of adobe buildings have brought about many injuries and deaths over the years. On one occasion, more than 200,000 died in a single earthquake in China. On the fringes of the Sahara Desert and other normally dry regions, rare torrential rains do occur. Occasionally these have turned clay-built villages literally into piles of mud. After such an occurrence, some villages have simply been abandoned.

Clay will remain an abundant Earth material and will be used long after present civilizations are history. Clay is the stuff from which civilization has been physically built in many ways.


probably the first mineral to cause people to travel substantial distances was common salt.

Trails made by animals to salt licks in the eastern United States were some of the first trails the early settlers used.

History records the caravans and traders who moved salt in ancient times over great distances. Some of these salt routes are still used in Africa. In the sixth century, salt was the chief item of trade for Venice, which developed a salt monopoly that extended over parts of the Mediterranean. Venetian salt traders traveled widely in their commerce.

Salt has been used as a final act of warfare. After the long series of the Punic wars with Carthage from 264 B. C. to 146 B. C., Rome finally prevailed. It utterly destroyed Carthage, plowed the site of the city and its fields, and sowed salt on the fields to destroy their fertility.

Gravel. One example of a basic resource we use that comes from nearby localities is gravel. Gravel pits are commonplace and generally not highly regarded. Yet we are greatly dependent on them. In our homes, and all the buildings of towns and cities, and in all the highways and byways all across the country, there is a very important group of materials called aggregates — sand and gravel. They are used in very large quantities and they are heavy. Hauling them long distances is expensive because of the energy cost, so nearby sources are used. The development of gravel pits is a frequent subject of contention, but they are necessary. Gravel pits can sometimes become an asset to the community when they are no longer needed or the supply of aggregates is exhausted, as they then are often graded and landscaped into parks, or made into ponds for local recreation.

Mining and the environment

Again, to provide all these everyday materials, the Earth has to be disturbed somewhere. If wells are not drilled or mines are not dug in your backyard, they will have to be done in someone else’s backyard. This may occur where the local population urgently needs the money for jobs or for public revenues. On a global scale, smaller nations without diversified economies will export anything of value and ignore environmental problems to obtain badly needed foreign exchange to acquire essential food, medicine, and basic goods.

If the environmental movement is to be honest about these matters, it should recognize that by locking up domestic resources, the problem does not disappear. It does “go away” — to some other place where the hole has to be dug to produce the resource. One might suggest that if the environmental movement is to be absolutely “pure” in the sense of not disturbing the Earth at all, houses, hospitals, automobiles, and factories should not be allowed, and we should all go back to living in caves. Unfortunately, like other Earth resources, the supply of caves is also limited. As the world becomes more populated, and as the populations of what are regarded as undeveloped nations are becoming environmentally conscious, the issue of the environmental impact of mineral resource development is becoming a worldwide concern.

Posted in Mining, Walter Youngquist | Tagged | Leave a comment

Walter Youngquist: Geodestinies Metals

Preface. I was fortunate enough to know Walter for 15 years. He became a friend and mentor, helping me learn to become a better science writer, and sending me material I might be interested in, and delightful pictures of him sitting in a lawn chair and feeding wild deer who weren’t afraid of him. I thought his book Geodestinies: The Inevitable Control of Earth Resources over Nations and Individuals, published in 1997, was the best overview of energy and natural resources ever written, and encouraged him to write a second edition. He did try, but he spent so much time taking care of his ill wife, that he died before finishing it. I’ve made eight posts of just a few topics from the version that was in progress when he died at 96 years old in 2018 (500 pages).

Other Youngquist Geodestinies Posts:

Alice Friedemann  author of “Life After Fossil Fuels: A Reality Check on Alternative Energy“, 2021, Springer; “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer; Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

* * *

Even if crude oil is obtained from wells or at natural oil seeps as occur many places in the world (almost all major oil fields exhibit oil seeps), it still has relatively few applications in its unprocessed form. When technology is applied and the crude oil is put through a refinery, and these refined products are further processed, the end result is literally thousands of items that make for better living worldwide.

Similar situations exist with the metals. Iron is an example. Occurring very rarely in natural form, iron was first discovered in meteorites. Swords fashioned from this hard material were called “swords of heaven” and very highly prized in battle. Because of the high melting point of iron, the metallurgy was discovered and developed at a rather late date. But, finally, what had been huge deposits of unusable iron ore in many parts of the world became valuable resources to be exploited. After the discovery that iron could be extracted from previously worthless rocks, it was further discovered that the addition of vanadium, chromium, tungsten, molybdenum, and other minor metals gave iron a variety of valuable properties, producing alloys for many important specialized purposes.


U.S., the world’s largest producer of nuclear energy, contributing 20 percent of its electric power, consumes 60 million pounds of uranium per year but produces only two million. Worldwide, the shortfall for existing reactors is about 100 million pounds per year. With more than 50 additional nuclear plants planned worldwide, including some in the U.S., the supply of uranium reserves in the ground will last substantially less than the 40 years projected. Taking everything into consideration, the expanded long-term anticipated future for uranium in world energy supply appears to be unfounded, unless reprocessing of existing uranium supplies can be successfully accomplished on a significant scale. So far this seems unlikely.

In a comprehensive study of world uranium reserves, the German-based Energy Watch Group issued a 2006 paper in which they questioned the long-term availability of uranium to fuel nuclear reactors. The study also adds perspective on near-term maintenance of current nuclear power capacity based on the estimated useful life of the operating reactors and their age. Their conclusions: Any forecast of the development of nuclear power in the next 25 years has to concentrate on two aspects, the supply of uranium and the addition of new reactor capacity. At least within this time horizon, neither nuclear breeding reactors nor thorium reactors will play a significant role because of the long lead times for their development and market penetration.

Just to maintain the present reactor capacity will require the completion of 15-20 new reactors per year.

The U.S. is more dependent on uranium imports than oil.  Demands for “energy independence” are frequently heard from politicians and others who may endorse nuclear power as one of the means to such an end. In the 2008 U.S. Presidential Campaign, Senator McCain urged immediate construction of 40 nuclear plants (to add to the 104 now in the U.S.) and suggested 100 more nuclear plants for the longer term as a road to energy independence. In citing nuclear plants, which produce electricity, to aid in the solution of the oil problem, the senator ignored the fact that only about two percent of electricity is currently generated using oil as fuel.

Eighty-five percent of U.S. uranium supplies must be imported, compared with about 50 percent of our oil. Increasing uranium as a fuel source would only increase our foreign fuel supply dependence. And that dependence is not likely to decrease, as prospects for large new discoveries of uranium seem unlikely in the already thoroughly explored United States. I worked for a year on this very problem, retained by an oil company seeking to diversify its energy base away from oil. The company eventually abandoned the project, because prospecting for uranium in the United States did not appear to be a significantly worthwhile investment.


Copper was extensively mined by early people in the Sinai Desert, and later on Cyprus (Poss, 1975). The deposits on Cyprus were so highly valued that war followed war in bloody contests for the metal.

Copper was the first metal employed as a shaped weapon in Old World warfare. Copper ores are relatively easy to smelt, so copper metallurgy developed early and copper became the first metal to be used extensively by several cultures. Its use marked an important transition from the long Stone Age into the age of metals.

In modern times, without copper the development of our highly electrified civilization might not have been possible, or at least considerably delayed, for copper has been the first and primary workhorse of the electric industry. Copper has the highest electrical conductivity of any metal, except gold and silver. It is now being partially displaced by aluminum, and glass fibers. However, the production of aluminum depends on vast amounts of electricity produced by copper coil-wound generators, and initially transmitted by copper wire to the aluminum smelters. Without copper, we might still be reading by candlelight or oil lamps.

adding tin to copper it would make it a much harder metal. Along with copper its use continues to serve us in various ways. The first true bronze with enough tin to indicate that the tin was an intentional addition to the copper appears about 3000 B.C. in Mesopotamia (Poss, 1975).

the Romans made extensive use of the copper/tin mixture to produce numerous bronze weapons

Although iron was known far before Roman times, it had only limited use, because the metallurgy of iron is difficult due to the high temperature required to smelt it.

The copper mining industry survives in modest form in southwestern United States, but other countries are now the dominant producers, notably Chile and Peru.

Copper and the electric age. About the time the steel business was booming, the electrical age was dawning. The electric motor had been invented about 1854. In 1879, Thomas Edison produced the first usable electric light, and visualized lighting cities. But how could electric current be transmitted to lamps for use in the home, offices, and factories, and to the motors that could replace so much of the hand labor in the factory?

Again, geology favored the U.S. with deposits of large native copper deposits, some of the richest known in the world, on the Keweenaw Peninsula of Upper Michigan. These deposits were mined to meet the demands of the electric age. Copper became the workhorse of the electrical industry. Upper Michigan, located not far from the industrial East and Midwest where much of the copper was used, produced huge amounts of this most useful metal. And it was inexpensive native copper. One mine struck a deposit of pure solid copper about 50 feet long with an average thickness of about 14 feet, weighing more than 500 tons. The copper, being so malleable, could not be blasted out, but instead had to be cut into small pieces. This procedure was economical because the mass was almost pure copper requiring little smelting and refining.

That it was not pure copper was also fortunate because the impurity it contained was silver. Silver is an even better electric conductor than copper, so the wires made from the Michigan copper with its silver content were superior in transmission performance.

Michigan copper was made into thousands of miles of wire that carried electric power to homes and factories. It made the workday more pleasant and efficient, and domestic life brighter. Copper wire carrying electricity allowed factories to operate three shifts a day instead of one. Copper greatly increased the productivity of the American economy.

In the 1830s, Samuel Morse established his telegraph line from Washington to Baltimore. Copper telegraph wires soon spanned large areas of the nation, first running along railroad tracks, and then spreading out and connecting many otherwise isolated communities with the outside world. Telephones began to appear, and copper wires were available to put this most useful instrument into many places. Business and industry greatly benefited by this communication system. All this was facilitated by the abundant rich copper deposits in Michigan, which could be developed at just the right time to promote the electrical age in the United States in all its many and varied useful forms. It should be noted that the Michigan copper deposits fed far more money into the American economy than did all the gold from the California gold rush.


The first record of iron being employed was 1450 B.C., and about 1385 B.C. the Hittites manufactured a substantial number of weapons from iron.

It was not until the Industrial Revolution that there was large demand for metals. Earlier, economies were largely agricultural. Rich, fertile land and fresh water were the resource prizes.

In the nineteenth century, Britain was successively the world’s largest source of coal, iron, lead, tin, and copper. During that time it was the wealthiest nation in the world and supplied more than half the world’s demand for some of these metals. From 1700 to 1850 Britain mined more than 50 percent of the world’s lead, and from 1820 to 1840 produced 45 percent of the world’s copper. From 1850 to 1890 Britain increased iron production from one-third to one-half of the entire world supply (Lovering, 1943).

The richest iron ore deposits then known in the world were discovered in the Mesabi Range of northeastern Minnesota. The large, local lower-grade taconite deposits had been fractured, weathered, and leached of worthless rock material leaving behind the mineral hematite, which is 60 percent iron. These rich iron ores were easily and economically connected with the two other main ingredients for making steel, high-grade coal and limestone, by the fortunate geography of the Great Lakes region. Iron ore could be brought down first by rail (downhill, an economically important fact for the transport of heavy iron ore) to Lake Superior. From there, cheap water transport moved the ore to steel mills in Chicago where the first American steel rails were rolled in 1865, and also to the Pittsburgh area — which also became a steel producing center — adjacent to the rich Pennsylvania coal fields. Both areas had abundant coal and limestone to combine with iron ore to produce iron and steel.

In the Mesabi Iron Range in Minnesota, the rich hematite (iron) ore has been exhausted, but very large quantities of lower-grade ore called taconite remain. This low-grade ore is crushed, and the iron content particles are separated and concentrated into pellets, and then shipped to steel mills. The uniform iron content of the pellets compensates in part for the lower-grade ore by allowing blast-furnace operations to be more efficient than when using raw but somewhat variable quality higher-grade ores. Despite competition from foreign high-grade ores, technology partially compensates for the depletion of the high-grade ores of Minnesota. This enables that area to continue being a competitive source of iron ore, although iron mining is substantially reduced from what it once was.

The blast furnaces around Chicago, Cleveland, and Pittsburgh produced it. American steel production was only 20,000 tons in 1867. But by 1895, it surpassed the British production of six million tons, and reached 10 million tons annually before 1900. Ultimately, a large steel network of rails stretched from coast to coast, an impossible task were it not for the great iron ore deposits, which had been discovered and developed on such a timely basis.

Steel also built the factories and machines with which more goods were produced. The railroads efficiently distributed the manufactured products such as steel farm implements for the pioneers breaking sod in the Midwest and the Great Plains. The railroad brought needed equipment and supplies to miners and ranchers of the mountain regions, and to the growing settlements on the West Coast, previously supplied mainly by ships, which had to go all the way around the southern tip of South America, rounding the treacherous Cape Horn.

Steel made the world’s first skyscraper possible. After the great Chicago fire of 1871, large areas of the city needed to be rebuilt. An architect named William Jenney demonstrated that walls of buildings were no longer needed for bearing the weight of the structure. Rather, with abundant and relatively cheap steel available, he could build a steel frame to act as the skeleton of the building. Using lighter weight materials, the structure could be walled in. Thus the first skyscraper was erected, the 10-story Home Insurance Building finished in 1885. It was such a success that two more stories were added later. The giant steel mills came into being because of the rich iron ore deposits of the Mesabi Range, which built the great railroad network, and provided the structural steel to build the huge complexes of office buildings and factories we know today.

The highways on which civilization moves in a literal sense, are made either of concrete (limestone and sand and gravel with some gypsum and clay) or asphalt (from an oil well) with crushed rocks mixed in for durability. An average asphalt road is about 10% tar. Without the tar, it would just be gravel road.

Our houses—since they first became a reasonably comfortable place with space heating and indoor plumbing—come largely out of mines. Surely, indoor plumbing alone was a major advance in civilization, especially in cold climates! The house foundation is probably of concrete, which is made from limestone, clay, sand, and gravel. The exterior walls may be made of stone or brick (clay). The insulation may be glass wool (quartz sand, feldspar, and trona—a sodium carbonate which is mined). The lumber is put together with screws and nails of steel and zinc. The wallboard that forms the interior walls of many homes is made chiefly of gypsum. The roof is probably covered with asphalt shingles. The asphalt came out of an oil well, and the filler in the asphalt shingles is a variety of colored silicate minerals. The fireplace is brick or stone with a steel fire box. The sewer pipe is made of clay or iron pipe or may be plastic from material out of an oil well. The electrical wiring is copper. Plumbing pipes are copper; fixtures are brass (copper and zinc) or stainless steel (nickel and chrome with iron). Roof gutters are galvanized steel (iron and zinc) or plastic from an oil or gas well. The various paints are derived from petroleum. Windows are glass made primarily from quartz sand. Doorknobs, locks, and hinges are of brass (copper and zinc) or steel (alloy of iron). It is truly said, “If it can’t be grown, it must be mined.” And finally the mortgage, if not written on newsprint, is written on quality paper made from wood or cloth fibers and filled with clay.

Iron ore deposits in Canada, Liberia, Brazil, and Australia now dominate the world supply. With little domestic aluminum ore (bauxite), the U.S. imports most of its ore from Jamaica and Australia and a few other places.


Gold was the first metal used by humans as it is bright and attractive in the native (pure) form, in which it commonly occurs. It can easily be worked into many shapes and does not tarnish. Gold nuggets in stream beds attracted attention very early.

The finding of gold in Australia, as in California, had a profound effect on the nation’s economy, and would do so in other parts of the world where gold was soon to be discovered: New Zealand, South Africa, and Alaska. The gold rushes, wherever they occurred, brought new settlers, new ideas, new vigor, and created new wealth. Without the enormous amounts of gold that were produced in the latter half of the nineteenth century the commerce of the modern world could never have reached the proportions that it has today. Only after the gold rushes was it possible to speak of something called world trade.

More recently the Siberian city of Norilsk has been built 200 miles north of the Arctic Circle. Temperatures there reach -40ºF and for two months there is no sunlight. Minerals are the only reason for the city, which is situated on what is probably the richest ore body in the world. It contains an estimated 35 percent of the world’s nickel, 10 percent of its copper, 14 percent of its cobalt, 55 percent of its palladium, and 20 percent of its platinum. The mine, even without additional discoveries, can continue to produce at the present rate for at least 40 years. The city will be home to the mines’ 155,000 employees and their families far into the twenty-first century.

In Colorado, an uninhabited broad upland valley in a few short months became Cripple Creek, which grew from a population of 15 people in 1891 to 50,000 by 1900. Similar growth occurred in several other areas of Colorado where gold was discovered, such as Central City.

In 1829, gold was discovered in what became the town of Dahlonega in northern Georgia and a new gold rush was on. Some of the land involved was Cherokee Indian territory, but with the influx of gold miners, the demand for the land grew and ultimately the Cherokees lost out. In 1835, the Cherokees were forced to give up all their lands east of the Mississippi River and ordered to move westward along the Trail of Tears. However, about 14,000 refused to leave, and in 1838 were forced out militarily. Some 4,000 died during their expulsion. The cause of this displacement was the discovery of gold.

The Sioux knew there were gold deposits in the Black Hills and had shown specimens of it to Father De Smet before Custer’s soldiers found it in French Creek (Wolle, 1953). Although the area had been set aside by the government for the Native Americans, this was ignored when news of the gold discovery spread, and miners flocked in. The initial discovery of gold in French Creek was on Native American land, which by the terms of the treaty of 1868 was off limits to white settlement. But miners persisted, and when restrictions were lifted during the years of 1875-1876, 11,000 miners entered the Black Hills. This invasion led the Sioux to resist and resulted in the famous Battle of the Little Bighorn where General Custer and his men were massacred on June 25, 1876. By September of that year, however, the Sioux were forced to sign a treaty giving up the Black Hills. Gold led to the expulsion of the Sioux.

All across the West, Native Americans came into conflict with the miners and had to give up territory. This resulted in a great weakening of their economic and political positions and with destruction of what had been a sustainable, albeit primitive, way of life.

The Yukon and Alaska gold rush of 1897-1898 was the last great gold rush of the nineteenth century, but it had all the excitement and problems of previous gold rushes, and it, too, opened up virgin territory. It had its origin when two prospectors, Robert Henderson and George Carmack, were salmon fishing in the Klondike River, a tributary of the Yukon River in far northwestern Canada. These men saw the glint of gold in the stream bed late in the summer of 1896, but news of the discovery did not get out until 1897. The Klondike Gold Rush was then on.

The town of Valdez at the head of Prince William Sound was a little fishing village until the Alaska gold rush started. Although it was not the shortest route to the goldfields, it was a route that did not cross into Canada and therefore avoided border inspection. Twenty- thousand people flooded into Valdez. In a few years the gold was minded out, and by the 1930s the population was fell to about five hundred. The population remained small until it was determined that the Trans Alaska Pipeline would terminate at Valdez, and once again Valdez boomed. Now, with the steady work the pipeline terminal affords, the population of Valdez has settled to about 4,000. Thus Valdez has seen two major bursts of population growth, one caused by gold and one by oil. And after oil?

Just as minerals move people into areas, exhaustion of these deposits may cause an outward migration. Many ghost towns in the western United States as well as in other parts of the world are grim testimony to the fact that minerals are a one-crop resource. The complete economic cycle is the discovery, development, and then decline and exhaustion of the one-time mineral crop. People move into developing mineral resource areas. Then, as the mineral base gradually declines, people move out. There are examples of this in partially abandoned mining towns, and the decline of once rich oil-producing areas. This can be seen even now in parts of the one-time oil producing giant, Texas

Gold rushes are a strikingly visible demonstration of how minerals move people and make for romantic history. Far more people have moved because of the availability of new lands with fertile topsoil to cultivate. Unlike the one-crop minerals and energy minerals, properly managed soil brings a crop year after year so people move in and stay.

Silver was discovered in many areas of the ancient world, but in one particular area, it played an important role affecting the course of Western Civilization. In the limestone hills near the town of Laurium, and also near the village of Plaka, about 30 miles northeast of Athens, large deposits of silver were discovered. For many years, Athens and Greek culture flourished in part because of the wealth taken from these mines. Each citizen of Athens was given an annual share of this treasure recovered at great effort and loss of life by thousands of slaves working in the mines.

Many specialty metals are very important in war. For example, magnesium is used in flares to illuminate enemy positions. Without cobalt and vanadium, the jet engine would be impossible. Molybdenum is a particularly useful metal employed in equipment of war as well as in civilian uses such as automobile sheet steel. It makes steel tough, rather than brittle. Without it, neither the ships and guns of the navy, nor the tanks and guns of the army, could be built.

Levi Strauss was a poor immigrant in New York. He made tents out of canvas material. His brother went to California during the gold rush and enthusiastically wrote back to Levi that there was great demand for tents for the miners. But by the time Levi arrived in California, the demand for tents had fallen off. Instead, there was a great need for durable work pants, which could also be made from heavy tent-like material, denim, with which Levi worked. Levi Strauss set up his factory in San Francisco that still supplies Levi’s to the world — a legacy, in a sense, from the California gold rush.

Posted in Mining, Walter Youngquist | Tagged , , | 1 Comment

Youngquist: Geodestinies Population

Preface. Youngquist emphasized overpopulation in everything he wrote, since this is the root of all our problems — pollution, climate change, soil erosion, fresh water depletion, extinction, biodiversity loss — can you think of a single problem that wouldn’t be better if there were fewer people?

Other Youngquist Geodestinies Posts:

Alice Friedemann  author of “Life After Fossil Fuels: A Reality Check on Alternative Energy“, 2021, Springer; “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer; Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

* * *


“Population growth is the primary source of environmental damage. Any organization dedicated to environmental protection must recognize that and devote at least part of its efforts towards population control. Treating only the symptoms of the problem while ignoring the cause is no solution.”   Jacques Cousteau

In 1992, the U.S. National Academy of Sciences and the Royal Society of London together issued a warning that “If current predictions of population growth prove accurate and patterns of human activity on the planet remain unchanged, science and technology may not be able to prevent either irreversible degradation of the environment or continued poverty for much of the world.

It is important to understand that a technology fix is not an answer to unrestrained population growth. It is a decision made by people, and they may or may not choose to use the “technology” of family planning.


Because past predictions of resource and population problems have proved incorrect, future predictions will not come true, therefore there is no need to be concerned. This view stems in part from past predictions of impending disasters that did not materialize as scheduled. Notable were those made by Thomas Malthus in 1798. The argument presented by those who apparently see no need to relate population to resources is that since Malthus’ predictions of two centuries ago proved so wrong, why should similar predictions be taken seriously today. Malthus’ predictions were wrong because he could not foresee the coming industrial and scientific revolution, including the Green Revolution. The Industrial Revolution provided much improved housing with adequate space heating, greatly improved sanitary facilities, and the machines and the energy to run them. It provided the basis for supporting an enormously much-expanded population. Huge resources not known to Malthus were discovered and developed. But, in the long run, Malthus was clearly right. Unchecked population growth will outstrip food supply (Ferguson, 2008d). That time may be near at hand. In 2008, world grain supplies stood at a 60-year low and per capita cereal grain production was the lowest it had been in more than 50 years. It is still on a steep downward trend.

Ferguson further observes that “For many decades, there has been a willful blindness to recognize that population is the pre-eminent problem.” In 1798, Malthus wrote, “Population, when unchecked, increases in a geometrical ratio, but subsistence increases only in an arithmetical ratio.” This is an early recognition of the importance of the exponential factor, which applies to many aspects of human existence and resource consumption.

We are running out of more Earth to explore and exploit. In Malthus’ time, the entire world’s mineral and energy resources were virtually undeveloped, and the means to exploit them did not exist. The situation is now reversing. The difference is the present peaking or declining energy and mineral production in many parts of the world, and an already huge and continually expanding population. We live on a finite globe, and there are no more new continents to move to as one region becomes depleted. The globe has been encircled.

United states. Based on indigenous resource sustainability and its ecological footprint, the U.S. is already overpopulated. The U.S. standard of living has been declining for several years. Costs of food and energy, both vital elements of everyday living, are rising faster than incomes, and 46 million people now receive a food stamp subsidy. The U.S. has no population policy. The size of a nation’s population, and on a personal basis, the number of children and standard of living are almost always in an inverse relationship. The only substantial meal some children in the United States now receive is at school.

The United States continues to add more people, but we are almost certainly already beyond a sustainable population size. Pimentel (2006) estimates that a sustainable U.S. population may be between 100 and 200 million, with the smaller figure more likely unless unexpected technological advances are made in energy sources. The U.S. population is now 315 million and counting. For the world, “Our suggested 2 billion population carrying capacity for the Earth is based on a European standard of living and sustainable use of natural resources” (Pimentel and Pimentel 2006).

World population still growing. The Population Reference Bureau (2005) writes: “Some stories in the popular media suggest that world population growth has stopped — but world population is still increasing at 1.2 percent per year, resulting in an additional 80 million people annually.” All estimates are for world population to increase for the next several decades at least. Riley and McLaughlin (2001) conclude: “Population growth the next two or three decades is possibly the world’s most serious problem, reducing our chances for a successful transition to sustainability while maintaining quality of life.

In 1966, Martin Luther King, Jr. recognized the serious problem of a growing population related to Earth resources and urged family planning as a solution. He said: There is no human experience more tragic than the persisting existence of a harmful condition for which a remedy is easily available. Family planning, to relate population to world resources is possible, practical and necessary. Unlike plagues of the dark ages or contemporary diseases we do not yet understand, the modern plague of overpopulation is solvable by means we have discovered and with resources we possess.

In an article titled “There Is No Global Population Problem” Hardin (1989) points out that unlike air pollution, which can be a global problem, population problems are within countries. He writes: We will make no progress with population problems, which are the root cause of both hunger and poverty, until we deglobalize them. Populations, like potholes, are produced locally, and, unlike atmospheric pollution, remain local unless some people are so unwise as to globalize them by permitting population excesses to migrate into the better endowed countries … . We are not faced with a single global population problem but, rather, with about 180 separate national problems.

Globalizing the population problem by allowing the free migration of excess populations is no solution. If we follow that road, eventually we will have perfect equality. Poverty and hunger will be equally distributed. If individual countries match their populations to the resources they can secure on an environmentally sustainable basis, then a reasonable standard of living can be achieved. But at present, this does not seem to be on the world’s agenda.

Subsidizing families larger than two children with tax incentives is a highly questionable policy. It does not improve the environment nor make it easier to obtain the resources to sustain a high standard of living. Governments should aid in family planning. This is probably the single most important thing that governments can do through the United Nations or individually for the future of the Earth’s inhabitants. Just a small fraction of the money spent on armaments would be a great asset for such a cause. Excess population in some areas is a cause of war, and continued population growth in other regions is the sole factor in environmental degradation. Environmental quality is a major part of any standard of living. If religious factors enter in, respect for the quality of life surely can be invoked. Quality, not quantity of life should be the goal.

Optimum population size

The most important variable for determining future quality of life will be population size. Optimum size depends to some extent on culture. What one culture regards as a good quality of life may be considerably different from another culture. But comprehensive studies indicate optimum population size is significantly less than the seven billion on Earth today. Smail (1997a) says: “ …the Earth’s long-term carrying capacity, at what most would define as an ‘adequate’ standard of living is probably not much greater than 2 to 3 billion people.” Other studies indicate less. Brown and Kane (1994), in a book with the very clear title, Full House, provide compelling evidence the environment now contains all the humanity it can handle. Pimentel and Giampietro (1994a) arrived at the same conclusion: “This brings us to the present situation where the world is full. The exponential increase in the demand for natural resources, due to demographic and economic growth, is rapidly eroding resource stocks and national food surpluses all over the world.

Birth control methods are relatively simple and are widely used, but not widely enough. The problem is human nature and ignorance. That is where the social sciences and education can do more than technology. And it would help to have the widely read and influential New York Times, as well as other media, find the courage to recognize and publicize the problem — and solutions. Legislative bodies must also confront population growth in the allocation of their resources. Funding family planning would probably do more for world peace than any other dollar spent.

Liebig’s Law of the Minimum. Justus Liebig was a German chemist (1803-1873), who, working with the chemical elements as they are applied in agriculture, determined that regardless of how many other nutrients were put on plants, if one essential element was below the minimum required, the plants would not grow. His law can be stated: “The growth of a species is limited by whatever required nutrient is least available. An organism is no stronger than the weakest link in its ecological chain of requirements. Liebig’s Law can be applied to inanimate natural resources as well. For example, the ultimate limiting factor on the rate of production of oil from the Athabasca oil sands is likely to be either water supply or energy available for the recovery process

In the Great Plains of the United States, the limiting factor for agricultural production is water supply from the underlying Ogallala aquifer. The general tenet of Liebig’s Law has widespread validity throughout the environment. The point is that there are limiting factors in the survival and growth of anything.

In determining what level of population is optimum, Liebig’s Law also applies. It means that the sustainable carrying capacity of a region is determined by the minimum environmental circumstances, not by the maximum. A simple example is in the populations of big game animals in northern latitudes. It is not the lush summer range that determines the survival rate, but the much more limited and harsh winter range environment. By the same token, human populations tend to expand for a time under favorable climatic conditions, as in parts of Africa for example. But periodically prolonged drought conditions arrive, and we see pictures of emaciated and dying children when famines occur. In the harsher minimum conditions, the population is beyond sustainable size. Sending food into such a situation is logical and humanitarian, but it ensures that when the next drought arrives, even more will starve.

Energy is the key that unlocks all other resources. It mines our minerals, and transports, smelts and processes them into useful forms. It plows our fields, transports our crops, processes them, and distributes them to consumers.

Energy supplies have determined the outcomes of wars

Two problems certain to dominate worldwide concerns this century are energy and population. The most basic source of energy for humans is food. More than oil, natural gas, coal, or any other form of energy, food is the first concern of everyone. In some regions, it already is. Eventually this concern will be universal. Unfortunately, as Roberts (2008) warned, the basic foundations of food production, soil and fresh water are being depleted. He says, “ … because water, unlike energy or fertilizers, has no alternative, this emerging scarcity poses a constraint on food supplies that in some ways is more final than that of oil or climate.

If anything backs the U.S. dollar now, it is the country’s manufacturing capacity, the ingenuity of its people (e. g., advanced electronic and medical devices, sophisticated forms of heavy equipment, airplanes), and its natural resources. Chief among these are its remaining minerals, its forests, and especially its fertile soil and freshwater supplies related to agricultural productivity. The United States is the world’s largest source of corn.

In some regions and in different times, emigration was the historical outlet for overpopulation. Movement of people to less occupied lands or recently to more affluent lands relieved social stress. But there are no longer empty lands, and many nations resist large immigrations.

David Attenborough (2011) raises this question concerning the problem of population growth: “I meet no one who privately disagrees that population growth is a problem…So why does hardly anyone say so publicly? There seems to be some bizarre taboo about the subject…this affects the people who claim to care most passionately about a sustainable and prosperous future for our children…their silence implies their admirable goals can be achieved regardless how many people there are in the world, even though they all know they can’t.

Population now grows faster than food production, and the result is that more than half the world population is currently undernourished. This is the largest number ever in history (Pimentel, 2011). Future agriculture is not likely to be as mechanized as it is today, and transport of foodstuffs from far places will not be as easy or inexpensive. Chilean grapes, Brazilian orange juice, and Australian oranges will show up less frequently on American and other nations’ tables, and ultimately not show up at all. Estimates are that the total distance food now travels to the average American dinner table is now about 1500 miles.

People use energy. More people use more energy if per capita physical standard of living is to be maintained. To raise the low standard of living in many nations takes more energy. It is as simple as that. Almost all deliberations about future energy are concerned with obtaining more and more energy from every possible source. The idea that population growth is the main, underlying problem does not seem to be generally recognized.

Deffeyes’ comment (2005) is pertinent: “Global per capita oil production peaked in 1979. Since 1979, the world has been producing people faster than we have been producing oil.” This will be a major problem this century.

The more people, the lower the standard of living.


The effects, some very subtle and some very obvious, are gradually decreasing the carrying capacity of our planet.

Although the interdependent relationship between humans and the Earth was understood in most earlier cultures, in many parts of the world today, this vital point is unrecognized or ignored in the current ideology of growth. We live in the shallow zone of a friendly environment. Relative to the size of the Earth, it is thinner than a coat of shellac on a large schoolroom globe. The topsoil on which all land life depends averages less than a foot deep, and above about 30,000 feet, the air is too thin for humans to exist. It is within these two limits where we must live. This delicately balanced zone vital to our existence needs great care.

In a classic and comprehensive study of past civilizations, Ponting (2007) writes: The most important task in all human history has been to find a way of extracting from the different ecosystems in which people have lived enough resources for maintaining life — food, clothing, shelter, energy and other material goods. Invariably this has meant intervening in natural ecosystems. The problem for human societies has been to balance these various demands against the ability of the ecosystems to withstand the resulting pressures.

Biodiversity is our most valuable but least appreciated resource (Wilson, 1992). Countless organisms support our life systems by diverse processes, which, collectively have been aptly termed “nature’s engineering,” the value of which can hardly be overstated. Eldridge (1998) states, “Scientists estimate that humans utilize over 40,000 species every day.” He lists 400 (just one percent of the 40,000), which help to support us. The substances these organisms give us, and the tasks they do, include antibiotics, food, pest control, pollination, nitrogen fixation, anti-inflammatory medicine, laxatives, skeletal muscle relaxation, antiseptic, carbon cycle, anti-hemorrhagic, anesthetic, fermentation, cellulose metabolism, and anti-malarial drugs.

Nearly half of humanity’s medicines are drawn from, or based on, natural ingredients, extracted from the very few species with which we are passably acquainted. Of the world’s higher plants, for example, scientists have screened only 0.5 percent, and these now provide the bases of forty-seven of the world’s major pharmaceutical drugs. Yet, according to a recent survey … tropical forests contain about half the world’s 125,000 species of flowering plants, and each plant will yield an average of six compounds that have medicinal potential…. Nevertheless, the world’s tropical forest, already reduced to half its preindustrial size, is disappearing faster than ever (Morrison, 1999).

In just one year, 2005, 10,400 square miles of the Brazilian rainforest were destroyed. At that rate, it will all be gone within less than 30 years. This great diversity of plant life, already the source of many useful drugs has been called “the green pharmacy.” To destroy it before we have studied the other 99.5 percent of plants for their medicinal potential has been described as burning down a library before we read any of the books. Yet, the destruction continues.

Rainforests are the world’s greatest repository of naturally occurring drugs, with a greater percentage of alkaloid-bearing plants than in any other region. Fourteen-hundred plant species may offer a degree of protection against cancer. One example is that someone suffering from leukemia in 1960 faced a one-in-five chance of remission. But, two drugs developed from a tropical plant raised the chances of survival four times. Worldwide sale of these two drugs in one year totaled more than $100 million.

Robert Costanza of the Institute for Ecological Economics has calculated an economic value for our natural biological systems. Studying forests, wetlands, and other ecological systems, he concludes that the value of nature’s services come to “ …about $33 trillion a year.” A freshwater marsh in Canada was worth 58 percent more intact thanks to hunting, angling, and trapping, than farmed…. A mangrove swamp in Thailand was worth 72 percent more when left intact to provide timber, charcoal, fish, and storm protection than after being converted to a shrimp farm” (Begley, 2002). A study by biologist Andrew Balmford at Cambridge University concluded, “In every case we looked at, the loss of nature’s services outweighed the benefits of development, often by a large amount.” A simple example of the value of natural services is the pollination of fruit trees by bees. It cannot be done by humans, but the bees’ work results in millions of dollars worth of produce just in the United States. Unfortunately, through the indiscriminate use of pesticides, the loss of honey bees has become a severe problem. In 2011, the traveling beehives available to orchardists needing their services were substantially fewer than the needs. Every act of destruction of part of the environment costs money, and adds to the perils of our survival.

The impact that population growth is having on the environment was clearly summarized in 1992 by the World Scientists’ Warning to Humanity. Signers of this appeal included 1,700 of the world’s leading scientists, among them were 102 Nobel laureates. These were a majority of Nobel Prize winners in the sciences living at that time (Union of Concerned Scientists, 2012). “Human beings,” they said, “and the natural world are on a collision course.” This important document, spearheaded by Massachusetts Institute of Technology Professor Henry W. Kendall, who is a Nobel Physics Laureate, and Union of Concerned Scientists cofounder, went on to say about population:

The earth is finite. Its ability to absorb wastes and destructive effluent is finite. Its ability to provide food and energy is finite. Its ability to provide for growing numbers of people is finite. And we are fast approaching many of the earth’s limits…. Pressures resulting from unrestrained population growth put demands on the natural world that can overwhelm any efforts to achieve a sustainable future. If we are to halt the destruction of our environment, we must accept limits to that growth…. No more than one or a few decades remain before the chance to avert the threats we now confront will be lost and the prospects for humanity immeasurably diminished.


More than 10 million people crowd Haiti’s limited area. Once almost entirely wooded, Haiti is now nearly treeless. People are digging up roots for fuel.

With Haiti’s population growth rate of about 2.8 percent annually, one of the highest in the Western Hemisphere, the problem will only intensify. At that rate, the population will double in about 25 years, which can become an absolute disaster. Supplying more and more imported food to such a situation with no attention to population control, simply treats the symptoms and not the cause, ensuring even greater problems in the future.

Some reasonable relationship between population and the resource base a country has or can import must be established. Otherwise, people will either starve or depend on permanent international welfare. To continue to export population cannot be the ultimate solution. Fewer and fewer countries are now willing or ultimately able to continue to be the safety valve for migrating population. Japan accepts virtually no immigrants, and Sweden for the first time has been turning some away. Germany has been expelling foreign nationals.

the United States now has a liberal immigration policy, allowing over a million newcomers in each year. It also has a relatively porous border, which lets in another estimated half million or more illegal immigrants

Because of the impact of illegal immigrants upon their resources, the states of California, Texas, and Florida filed lawsuits against the U.S. Government in 1994. The suits asserted that lack of enforcement of federal immigration laws resulted in an intolerable drain of resources from the states. In California, all the recent growth of that state has been due to foreign immigration. To accommodate the increase in children, in 1995, one new schoolroom had to be built each hour, and one new school each day (Carrying Capacity Network, 1995). In 1994, California passed Proposition 187 denying illegal immigrants a variety of services, including schooling. This caused numerous protests and demonstrations. But the immigration which accounts for almost 100 percent of the state population growth continues. California, which has had a 75 percent increase in population since 1970, now has 38 million residents, and expects to have a population swelling to 58 million by 2040. California is now the fourth largest consumer of oil in the world behind the United States as a whole, China, and Japan. Water is becoming critically scarce in some areas of the state, with Imperial Valley agricultural irrigation water from the Colorado River being sold to the cities. California’s resource base is already strained. How will the additional 20 million expected by 2040 be supported? This prospect must be squarely faced because most people living in California today will see that increase and its accompanying demand on resources.

The high physical standard of living in the United States, which attracts immigrants, legal and illegal, is based on availability of Earth resources. To maintain that standard of living, each year, each person in the United States must be provided with some 20 tons of mineral resources. As more and more people enter the country by birth or legal or illegal immigration, 20 additional tons of minerals must annuall—not just once, but every year—be provided for each individual.

Ethiopia, with a present population of 57 million faces a colossal increase of 106 million during the next forty years, based on current growth rates. It is almost impossible to imagine how Ethiopia could possibly feed so many more people. It has some of the world’s most severely eroded soils, much of its cropland is on steep slopes, and its tree cover stands at a mere 3 percent. Many in Ethiopia’s next generation will probably have to choose between emigration and starvation.


if nations do not shift spending priorities from military security to investments in the long-term environmental and social health of their citizens, these numbers may be dwarfed by the tide yet to come.

Today there are no large unoccupied resource-rich areas to absorb migration. There are no vacant fertile, well-watered lands. The globe filled up. New lands with untouched resources were no more.

With no new geographic frontiers in which to expand, today’s nations jostle for position within the well-populated and fully explored world. The competition through migration and perhaps military conflict will increasingly be over access to Earth’s remaining resources of energy, water, fertile soil, and other minerals. Making rational and successful adjustments between population and resources will determine the destiny of the human race. Populations must recognize that this destiny is by geology imposed upon them. There must be a recognition of natural limits (Hardin, 1993; Meadows, et al., 2004).

Because resources and population are unevenly distributed, the current trend is for people to move from distressed areas to areas that have more resources, or for wealthier nations to send basic resources to the impoverished regions. Such aid does not solve the basic problem and may only make it worse if it allows more people to survive temporarily on a land already over-populated for its resources.

Hardin’s observations are a facet of his “lifeboat ethics” (Hardin, 1974). A ship is sinking, and there is one lifeboat. It is launched and filled to its stated capacity of 50 people, but there are still 100 people in the water. Do you, in the spirit of fairness for everyone, take on the additional 100 from the water and have everyone drown, or do you preserve the one lifeboat and its passengers so they can get to the far shore and survive? Do you convert the entire world to a giant slum by unrestricted immigration and no population control? Or do you restrict immigration and insist that individual nations do something about population, so that at least some of them who are successful survive? At present, a number of nations are trying to export their population problems, which ultimately will, if not checked, become a global disaster. However, it will have the merit of equality. Poverty will be universal.

Continued population migration will make this concept of “lifeboat ethics” a serious consideration. Responsible and firm action may be required to prevent “lifeboat nations” from being swamped and sunk. Lucas and Ogletree (1976) relate this problem to world hunger. Pimentel and Giampietro (1994) have an implied “lifeboat” role for the United States in their statement, “Self-sufficiency in food production and other basic resources should be viewed as a strategy to guarantee a continued high standard of living and national security to U.S. citizens in the face of turbulence that can be expected around the world in the next decades.

The United States should consider where these trends are taking the nation. Together with Canada and Australia, it is one of the few industrial nations still experiencing rapid population growth. With an increasing population consuming diminishing domestic resources, it is difficult to see how the present standard of living can be maintained. By some measures it is already in decline. Inevitably, a balance between resource consumption and population must be achieved. The question is: at what standard of living will that be achieved? People use resources. Divide resources by population to help answer the question.


NEPAL nestles amongst the Himalayas. Much of the land is precipitous, and winters are cold. The Nepalese need fuel, which they get from trees. Because more Nepalese are being kept alive now, the demand for timber is escalating. As trees are cut down, the soil under them is washed down the slopes into the rivers that run through India and Bangladesh. Once the absorption capacity of the soil is gone, floods rise faster and to higher maxima. The flood of 1974 covered two-thirds of Bangladesh, twice the area of the ‘normal’ floods, which themselves are the consequence of deforestation in preceding centuries.

Hardin observed that it is never said that people die of overpopulation. They die of floods, famine, typhoons, landslides, and other disasters. Bangladesh has an area of 55,126 square miles, about 1,100 square miles smaller than the State of Iowa. Yet, 151 million people now live in this area! Imagine 151 million people living in Iowa with a substantial part of the state consisting of a marshy deltaic area only a few feet above sea level. At times, typhoons from the Indian Ocean sweep in and flood the Bangladesh lowlands killing thousands of people. At other times, floods from the Ganges and Brahmaputra rivers, whose headwaters lie in the once heavily forested areas of the southern Himalayas, inundate the extensive lowlands. Stripping these headwater areas of vegetation to use for fuel caused by the overpopulation of the region, further compounds the problem, increasing the rate of runoff from the barren slopes.

HAITI is a country of 10,500 square miles inhabited by more than ten million people. It is projected to have 11.5 million people by 2025 and 14.3 million by 2050 (Population Reference Bureau, 2010). Haiti has no oil, natural gas, coal, or significant water power. Much of it is mountainous. To obtain fuel, the country has been almost entirely deforested. Roots of trees have been dug out to make charcoal. It experienced devastating heavy rains in 2004. I visited Haiti and observed the worst erosion I have seen anywhere during my travels in more than 70 countries. Haiti has been dependent on international welfare for many years. Given present trends, there is no apparent escape. The question arises as to how much longer such welfare can be provided, and who will provide it? The rest of the world cannot support Haiti indefinitely. Population problems are homegrown and ultimately must be solved there. In the meantime, when the next heavy rains come, more people will die from debris floods caused by the deforested hills. Clearly, overpopulation resulting in the destruction of the environment kills people.

Some countries are still unable to feed themselves from domestic food production, and are now permanently dependent on international food assistance. At the same time, this has enabled their populations to grow without the basic historic limitation of food supply. Currently, 27 countries depend on international food assistance, including Bangladesh, Egypt, Ethiopia, Haiti, and Senegal.

Too many people destroys the environment

At the same time that environmental rules are enacted, it is important to remember that society has been brought to its present state of affluence through the use of these resources. A higher standard of living in material terms, means the use of more energy and mineral resources. Environmental impacts of obtaining these resources can be mitigated to some extent, but to drive an automobile, holes in the Earth have to be dug somehow to obtain the iron, aluminum, copper, and glass to build the car. Energy has to be obtained to process these materials into the car (all materials listed have to be smelted which is an energy intensive process). Energy in some form, now chiefly from derivatives of petroleum, is necessary to move the car. Getting all this energy involves environmental impacts. To lead the good life, or any life, Earth resources must be used. The more people, the more is demanded from the Earth.

Many offshore ocean areas are now off limits to mineral resource exploitation, which mainly affects petroleum operations. This is particularly true off the California and Florida coasts. The reason for this, in part, is that ocean view property is extremely desirable and expensive. Tourism in both states is also important to their economies. Therefore, the value of a pristine view, unobstructed by offshore drilling rigs or petroleum production platforms — or large wind turbines for that matter — is thought to be more valuable than the resource that might be developed. Yet both states are highly dependent on imported oil and are huge oil consumers. In world oil consumption, the United States is first, China is second, Japan is third and considered all by itself, California is fourth. But California has large areas, chiefly offshore, where oil exploration and development is forbidden. “Dirty someone else’s backyard, not ours, for the resources we use,” is the prevailing view. This ethic is referred to as NIMBY, Not-In-My-Backyard.

Substantially adding to the problem is that population continues to increase. Currently 80 million people are added to the world each year, a number about equal to the population of Germany. The additional resources to support all these people must come from somewhere. Also, many relatively undeveloped countries are striving to achieve a higher-material standard of living. So there is not only the problem of providing material resources for 80 million more people each year, but to provide increasing amounts of raw materials for the many people already here who aspire to a better existence. The so-called Third World and lesser-developed countries account for half the world’s population. The resources necessary to appreciably raise their living standards are enormous, and in fact may not be available. The problem has the potential for serious conflict.

The current world environmental scene with regard to mineral resource development is mixed. In some areas, the situation is not good; in other places, strict laws are minimizing impacts. On the negative side, one might cite the 1980s central Amazon basin gold rush (Lea, 1984). Tens of thousands of people invaded the area and set up crude mining facilities. The panning and sluicing operations put tons of sediment into local streams much to the detriment of the fish. But possibly even more destructive was that in most operations, mercury was used as an agent to recover the fine gold. This mercury is now in parts of the Amazon drainage and can be a deadly contaminant to the aquatic life, and ultimately a part of the food chain that leads to humans. Elemental mercury (Hg) is converted by bacteria into toxic methyl mercury (HgCH3), a neurotoxin. Through bioaccumulation and biomagnification, methyl mercury concentrations increase to potentially dangerous levels in organisms higher on the food chain – in carnivores and predators like human beings.

Population and Climate Change

If population growth promotes more industrialization with more power plants, more cars and trucks on the road, and is a significant factor in global warming, then those concerned with global warming should also be concerned with population matters. Professor Tim Dyson of the London School of Economics argues that the positive effects of a 40% cut in per capita carbon emissions in the developed world would be completely canceled out by global population growth by 2050.

Overpopulation is decimating fisheries and wetlands

Fish populations are diminishing around the world. The dramatic decline of codfish off the coast of Newfoundland and the decimation of fisheries in the China Sea are two of many examples. Sharks, swordfish, and other big game fish are been greatly overfished, with some populations reduced by 90 percent. Off the West Coast of the United States, bottom fish (rockfish) found in markets, have been greatly reduced and fishing is greatly restricted. A contributing factor is the use of bottom trawlers, which scrape the seafloor, catching everything, and in the process tearing up the seafloor’s delicate balance of organisms. Another factor is the slow growth of many bottom fish. Some take 5 to 20 years to reach reproductive maturity. The yelloweye rockfish begins to bear young at 16 years, and may live to 114 years. Overfishing off the Oregon coast resulted in a drop in yelloweye landings from 364,458 pounds in 1992 to 9,564 pounds in 2000. An extreme example of overfishing a particular species is the boccaccio. It is estimated that even if it is not fished again, it will take 92 years to rebuild the population to earlier levels. One fisherman said, “We have the technology to catch all the fish in the sea.” This is the problem. Off the Oregon coast, fish landings dropped 61 percent from 81 million pounds in 1993 to 39 million pounds in 2001.

Water habitats also are being destroyed by sedimentation, contamination from waste water, and toxic runoff from the streets of cities and towns. This is the story of streams and estuaries across the United States. Coastal marshes, the nurseries for many fish and other organisms, are in decline because of human encroachment. California has lost about 90 percent of its valuable wetlands. In the states of Oregon and Washington, wetlands are under assault from both development and pollution, degrading their life supporting systems.

The state of Louisiana contains 40 percent of the wetlands of the United States. The value of these lands is huge, with 95 percent of all marine species in the Gulf of Mexico spending all or part of their lifecycles there. They supply the source of more than 30 percent of the nation’s fisheries’ catch. It also is one of the largest habitats in the world for migratory waterfowl. It provides protection from storm-generated ocean surges for the more than two million people living in the coastal zone, including New Orleans. Yet, about one million acres of these wetlands have vanished since 1900; many square miles are lost each year.

In part, the loss is due to the natural sinking of the land. But in nature, this is compensated largely by the inflow of sediments from river distributaries. However, levees have been built to keep the Mississippi River in a single channel away from where it would naturally spread out and distribute the load of sediment laterally through marsh areas. There is a program under way to restore the wetlands as much as possible by river water introduction, sediment and nutrient trapping, vegetative planting, marsh creation and other measures. This is projected to be a 20- or 30-year project costing $14 billion or more. At best, it can only be partially successful in replicating the natural system.

Interfering in natural systems such as deltas and river courses has been disastrous in many areas. This is now widely recognized. One project was undertaken in Florida, in which streams were “channelized” by straightening the meandering streams that entered the Everglades region. This practice proved to be destructive to the Everglades environment, so now more money is being spent to restore the streams to their previous natural meandering courses. The once lush four million acres of wetland Everglades wilderness has been reduced to less than half that size. It is finally apparent to the six million residents of southern Florida that they depend on the Everglades for their drinking water. They are now directly interested in preserving what is left, and have launched the Comprehensive Everglades Restoration Plan. Human habitation, however, continues to expand. The Commission for a Sustainable South Florida warned that, “rapid growth and sprawling development patterns are leading South Florida down a path toward wall-to-wall suburbanization.” Population growth is the problem. Land and water resources cannot expand accordingly.

The U.S. Fish and Wildlife Service states that the U.S. loses 60,000 acres or more of wetlands annually. In the ten years from 1986 to1997, the loss was 644,000 acres. During that decade, the United States added 30 million people to its population.

The coastal marshes and shallow waters of the continental shelves are far more biologically productive than deeper open ocean areas. They are the nurseries of many marine species. But these are the areas subject to increasing contamination from the polluted run-off of the continents.

In a study of United States coastal areas, Brinckman (2001) makes a number of significant observations: Half the U.S. population lives in a 50-mile-wide ribbon along the coasts. Projections for the next 25 years show that half the nation’s population growth will occur within that ribbon adding 39 million people to 17 percent of the U.S. land area…. The construction of roads, buildings and parking lots along U.S. coastlines has become one of the most serious dangers to the oceans, joining the better-known threats of overfishing, industrial pollution, and invasion of non-native species. The primary reason: Development and roads near ocean shores send toxic chemicals and other pollutants directly into fragile ocean marshes, estuaries and lagoons…. Findings released this month in Portland show that when paved areas near ocean shores exceed 10 percent of the land area, coastal ecosystems degenerate rapidly. Rainwater flows off impervious surfaces quickly, instead of seeping into the ground. Stream banks erode, the water gets warmer, and pollution from cars and homes washes into estuaries and marshes…. Population growth in coastal regions is increasingly recognized as a major cause of harm to fish, birds, and ecosystems along the shore.

The Mississippi River system drains parts or all of 31 states, a total of 1.2 million square miles. All the pollutants drained from this large area eventually become concentrated in this one river. Water runoff from streets and farms create huge amounts of chemical runoff. In places, raw sewage sometimes discharges into the river. This huge volume of chemicals, much of which is agricultural fertilizer and feedlot runoff, becomes nutrients breeding widespread algal blooms at the mouth of the Mississippi.

These blooms grow and multiply until all available nutrients are consumed by the algae at which time the algae dies and sinks to the sea floor. Bacterial decomposition of the algae then uses up all the oxygen available in the water column, killing all marine species that require oxygen and can’t rapidly leave the area. Oysters, worms, and other similarly immobile species perish. This dead zone moves around in the northern Gulf of Mexico with the prevailing currents and can even trap and kill mobile crustacean and fin fish species (Phillips, 2005).

Lack of media recognition of the basic population factor.  An example of how the issue of population and population growth is be ignored by a major newspaper is found in an article by a columnist for the New York Times. Returning from Niger, which he identifies as, “ … the most wretched country in the world”) he writes: I stopped in village after village where peasants told me of young children dying of starvation in the last few months. One man named Haroun Mani had just buried three of his eight children…. We need a new international initiative to extend the Green Revolution to Africa…. Momom Burhary, a 63-yearold man, stated: ‘And this land used to be far more productive than it is now. When I was a young man, the annual harvest would last a full year. Now it only lasts three months and then we run out of food.’ We are not even using our aid money wisely. Unless we help start a Green Revolution in Africa, we’ll be back in Niger year after year — and every village will be surrounded by more tiny graves. What the columnist advocates is simply making more food available so more people can survive to produce more children, and on and on. Producing more food would be good — only if population is stabilized at the level where the food supply can support the population at a decent standard of living.

The columnist avoids any mention of population or population control. One would think when the man told him he had just buried three of his eight children, it would have dawned on the writer that population is a large part of the problem, and until it is recognized as such, all other efforts are doomed to fail. Niger’s population, now 16 million is projected to reach 55 million by 2050. But, the word “population” does not appear in the article.

It is always the children who do most of the starving. Emaciated bodies are carried in the arms of people still at least able to get around to some degree. If we don’t want to see starving children, we must first acknowledge they are long-term responsibilities. People must assume responsibility for each life they create and not pass their child on to others for care. This most personal aspect of public policy must be confronted the world over in undeveloped areas, as well as in industrialized societies. Global lack of responsibility on population growth will assure that, as resources become more and more limited, social chaos will grow. If it could be arranged that whenever more children are brought into the world than parents can support, the parents would be the ones to starve and the children be allowed to survive, the problem might be solved rather quickly. Children who are totally innocent in creating the problem have to suffer the ultimate consequences.


Herschel Elliott (2005) in his book, Ethics for a Finite World, an Essay Concerning a Sustainable Future, writes: It is important to stress that to prevent the citizens of overcrowded nations from becoming permanent residents of less-populated countries is not racism or imperialism. Rather it is a logical consequence of the finitude of every nation’s boundaries. Inevitably, the land and resources of every nation have a maximum support capacity at any given standard of living…this is not a cultural racial prejudice; rather is a logical consequence of the fact that people live in a finite world — a world in which citizens become desperate when their rapidly rising numbers exceed the capacity of their environments to sustain them.

Beyond whatever other matters relate to immigration, the problem should be viewed in the larger, more fundamental context of how many people a country can adequately support at a desired standard of living in both the immediate and long-term future. In the case of the United States, people continue to migrate to it because it is, among other things, a “rich” country. However, that view may be increasingly an illusion. With an annual deficit in international payments of more than $600 billion, the rest of the world is loaning the U.S. nearly $2 billion a day to support the American lifestyle. It is like a giant credit card and, like all credit cards, it has limits, and must eventually be paid. Historically, the U.S. economy has generated employment and that is the “pull” of many immigrants to the United States. During recent street demonstrations by Hispanics, one who was interviewed simply said, “I can’t make a decent living for my family in Mexico.” To a considerable extent, this reflects a failed Mexican economy. It also reflects a population growing beyond what the environment can support. In 1960, Mexico’s population was 34 million. By 2011, the population had more than tripled to 115 million. This trend ensures strong and continual pressure to migrate.

In direct contrast to its actions at its northern border, where Mexico has provided maps and instructions on how to cross into the United States, Mexico is actively trying to protect its southern border with Guatemala. Guatemalans and Hondurans, with annual population growth rates of 2.5 percent and 2 percent, respectively (doubling times of 28 and 35 years, substantially higher than Mexico’s at 1.3 percent), seek to enter Mexico. In Mexico, illegal entry is a felony that is subject to a two-year imprisonment and a $28,000 fine. Mexico is very cognizant of its population problem, and, indeed, has done much more to address it than all of the Central American countries except Costa Rica.

Eventually, some nations will try to balance population with indigenous renewable resources. This cannot be achieved with unrestricted immigration. Elliott (2005) writes: “Autonomous nations must be allowed to carry out their own cultural experiments without incurring the moral obligation to rescue the nations whose misguided experiments have failed. The autonomy of nations requires them to be self-reliant and self-supporting … the citizens of all nations have to experience the destructive consequences of their own experiments in order to learn how to correct them and better to fulfill the goals of moral life. Any nation that does not limit immigration loses its ability to make its own cultural/ moral experiment. Its failure to curtail immigration would prevent it from choosing to use its lands and natural resources to support a minimal population at a high standard of living, and maximum quality of life. In effect, uncontrolled immigration allows the nations whose experiments have failed to overload the world lifeboat and cause it to founder.” When the world is forced to rely chiefly on renewable resources, the challenge will be for each nation to live on its indigenous resources. This was the world condition prior to the industrial revolution.

Many immigrants to the United States are refugees because environmental problems are not being dealt with in their native countries…many of the world’s violent conflicts are heavily influenced by — if not caused by — overpopulation and environmentally mismanagement of agriculture, water, and forestry resources. Immigrants from Central America, Haiti, and other places to the United States are, in many instances, environmental refugees.

End note

I was fortunate enough to know Walter for 15 years. He became a friend and mentor, helping me learn to become a better science writer, and sending me material I might be interested in, and delightful pictures of him sitting in a lawn chair and feeding wild deer who weren’t afraid of him. I thought his book Geodestinies: The Inevitable Control of Earth Resources over Nations and Individuals, published in 1997, was the best overview of energy and natural resources ever written, and encouraged him to write a second edition. He did try, but he spent so much time taking care of his ill wife, that he died before finishing it.

I’ve made eight posts of just a few topics from the version that was in progress when he died at 96 years old in 2018 (500 pages).

Posted in Experts, Overpopulation, Walter Youngquist | Tagged , , , | 1 Comment

Walter Youngquist: Geodestinies

Preface. I was fortunate enough to know Walter for 15 years. He became a friend and mentor, helping me learn to become a better science writer, and sending me material I might be interested in, and delightful pictures of him sitting in a lawn chair and feeding wild deer who weren’t afraid of him. I thought his book Geodestinies: The Inevitable Control of Earth Resources over Nations and Individuals, published in 1997, was the best overview of energy and natural resources ever written, and encouraged him to write a second edition. He did try, but he spent so much time taking care of his ill wife, that he died before finishing it. I’ve made eight posts of just a few topics from the version that was in progress when he died at 96 years old in 2018 (500 pages).

More than any other energy and resources writer I know of, he focused on population as being the main problem that needed to be solved if we hoped to have a better future.

This first part covers many topics about energy, consumption, war, soil, oil production on various countries, and more. I have several more sections of this book in other posts under Experts/Walter Youngquist

Other Youngquist Geodestinies Posts:

Alice Friedemann  author of “Life After Fossil Fuels: A Reality Check on Alternative Energy“, 2021, Springer; “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer; Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report


The destinies of all nations and all people are in many ways bound up with the mineral and energy mineral resources of the Earth. Events of the geologic past have richly endowed some nations with valuable resources, whereas others have very few. The result is markedly different destinies for different nations. How these resources have affected the peoples of the past, how they influence our lives now, and how they will determine our futures is the study of GeoDestinies.

In a relative geological fraction of a second, these resources are being consumed. Soon these gifts from the past — in the case of mineral energy resources, petroleum, coal, and uranium — will be gone forever. Some metals can be reclaimed and recycled. Still, there is an inevitable percentage that will be dissipated and can never be recovered.

Currently in the United States, about 25 percent of all energy produced is used to produce other energy. Energy is essential to drill for oil, mine coal, mine uranium, cut wood, make solar and wind energy conversion devices, and so on. As the easily recoverable energy mineral resources (petroleum, coal, uranium) are increasingly exhausted, the cost in energy to produce more energy is estimated to rise to about 33% in the next ten years. It will almost certainly continue to rise after that. This trend in energy costs can be fatal. If it ultimately takes as much in energy as the energy produced by the effort, there is no energy surplus to use in other energy consuming sectors of the economy. At that point, the game is up.

Professor David Rutledge at the California Institute of Technology projects that 90% of all economically recoverable fossil fuels will be exhausted by 2070, meaning that they will be diminishing far earlier than that.

The globalization of commerce and trade by use of oil has led to the worldwide exploitation of mineral and energy resources by the industrialized and industrializing countries, in effect, “the tragedy of the commons” (Hardin, 1969) in its ultimate final form. The decline of oil production will in turn result in the return of local economies forced to exist on more locally available resources, as has been the circumstance during much of human history. This will greatly remake our economies and lifestyles from what we know today.  

Due to differences in living standards, some populations (in industrialized countries) use more resources per capita than other populations. In some places local populations are so desperate to survive they destroy the environment with present use and cannot preserve it to sustain future population. In general, population growth and the environment are in direct conflict.

Around the world, the most easily discovered and recovered, higher-grade mineral and energy mineral deposits are used first. Thus, there is increased demand each year against resources that are declining in quality and cost more in both energy and money to obtain.

The desire for an understandable increased standard of living, together with the continuing rise in population, creates an exponential demand on mineral resources. In the first 50 years of the 20th  century, the total world production of minerals and mineral fuels was far greater than the total production of these materials during all previous history. Then, in the following twenty years, this production was exceeded again by approximately 50%. When graphed, these statistics show an exponential curve that is rising steeply toward a vertical line. Such a rate of consumption cannot be sustained.

The dependence of the United States on imported minerals continues to increase. In 1986, the country imported 100% of five essential minerals. By 2000, the number of minerals for which we are 100% import-dependent increased to 13. U.S. dependence on imports includes manganese necessary for steel production, the yttrium used in color TVs and computer monitors, and mica used in electrical transformers. In 2000 the United States had a net import reliance of greater than 50% for 33 mineral materials.

Over the long-term, fertile soil and fresh water supplies of the United States are the most valuable of all its resources.

Minerals, including energy minerals, are the basis for our modern civilization. Nations not possessing these are either doomed to remain at a relatively low standard of living, or they have to get these resources in raw or finished form by trade or by moving industries abroad where the resources exist. Can free trade and access to raw materials prevent the “Japan decision” to go to war for resources? Minerals and energy minerals have markedly altered the course of civilization through warfare.

We must become stewards of the resources of our own regions, assuring that the fertility of the soil and the purity of water and air are maintained to provide material and energy needs and to absorb wastes, and recycling materials for continual use.

The story of the importance of minerals and the rise and progress of civilizations are parallel stories. The search for and discovery of minerals from salt to gold and silver have caused mass migrations of people. Searching for minerals has been the cause of the opening of new lands. It has been said that “the flag follows the miner’s pick.” The quest for gold and silver lured Spaniards to the New World, resulting in the conquests of Mexico, Colombia, Peru, and some of the adjacent lands.

Migrations of people today to resource areas, or to nations that can import resources, are perhaps greater than at any time in the past. Seeking jobs and a higher standard of living, largely based on Earth resources, people today are moving, both legally and illegally, by the millions.

As a result of resource depletion caused by rising population, refugees, often with different birthrates, will markedly change the demographics of much of the world in this century. The fundamental causes of resource-related population migration and growth, such as land degradation and desertification, energy, food and water demand, are the essential forces for monumental changes we will see this century (Duguid, 2004). People are on the move.

Although the resources are consumed mostly by the generations that discover and develop them, there is an argument that at least some of these riches should be passed on in some form to future generations who did not have the good fortune of living during this period of great mineral wealth. These are your children and your children’s children. To be sure, some of this wealth will be there in the future in the form of the buildings, factories, houses, roads, bridges, railroads, locks, canals, power stations, water lines, sewers, and many other structures for which mineral resources and the wealth derived from them are used. But in the case of fossil fuels, although they help to construct these physical features of civilization, their use leaves no legacy when used to power motor vehicles. The same is true with other energy uses such as space heating, and in producing products with a limited life such as automobiles, airplanes, household appliances, and sporting goods. Some of these products can be recycled, but inevitably much will be discarded.

The United States still has rich fertile land, but even that is being degraded by erosion and soil nutrient depletion, and the groundwater supplies needed to support irrigated lands are being over-pumped. Increasingly, the United States lives on “imported affluence.” Unending tides of immigrants continue to arrive in a land that is now the third most populous nation in the world, to share in a fading American dream.

In general, the oil we now recover is lower grade than previously. It takes more energy to refine the same high-quality end product from lower grade oil than higher-grade oil. Recovering oil from the Athabasca oil sands of Canada, for example, and then upgrading it to a product equal to what we can recover from conventional oil wells takes considerably more energy.

The answer to the question “what’s the answer?” is that it is not going to be possible to keep the current game going, hugely dependent as we are on fossil fuels. When I say this, I sometimes add that if I did have “the answer” and could patent it, within five years, I would be the world’s richest man. When I tell the audience there is no simple solution, I generally do not get invited back. We all like simple, inexpensive answers to problems. The problem of replacing oil offers no easy or inexpensive solutions.

The thin veneer of civilization. The isolated violence that occurred in the gasoline lines in the U.S. during the 1973 and 1979 oil crises suggest that civilization, even in a highly civilized United States, is a perilously thin veneer. The British social critic, C. P. Snow, wrote: “Civilization is hideously fragile and there’s not much between us and the horrors beneath, just about a coat of varnish.” That thin coat of varnish consists of the availability of the basics of life — food, shelter, and clothing. The ability to produce and distribute them in the huge quantities in which they are in demand today is possible only through the use of mineral and energy resources. Earth resources will increasingly affect the stability of our societies (LindahlKiesling, 1994).


Since World War II, the world, led by the United States, has consumed more natural resources than in all previous history. That was the twentieth century.

North America, and particularly the United States, initially had resources in variety and abundance virtually unmatched by any other area of the world. With this marvelous spectrum of mineral and energy resources, the United States grew from a wilderness to become the richest and most powerful nation in the world in less than 400 years

Such development is historically unprecedented and can probably never be repeated.

By the late 1920s, the United States, with six percent of the world’s population, was producing 70 percent of the world’s oil, almost 50 percent of its copper, 46 percent of its iron, and 42 percent of its coal (Groner, 1972). The ability to produce and use these basic industrial materials and energy resources in large volumes was the key to the phenomenal development of the United States.

Including sand, gravel, cement, dimension stone, clay, and the energy and metal supplies already listed, more than five billion tons of new minerals are needed each year to support the U.S. economy. These demands add up to more than 20 tons of raw energy mineral and mineral supplies which have to be produced each year for every man, woman, and child in the United States, if our material standard of living is to be maintained. And, importantly, these demands increase in total size each year as our population grows by natural native increase, and by both legal and illegal immigration.

How fast a culture advances has largely been determined by what mineral and energy mineral resources it had available to it and to what degree technology development allowed them to be used. Mineral and energy resources combined with human ingenuity have been the mainsprings of civilization.

Energy is the key which unlocks all other natural resources and provides the physical and economic foundations of modern civilization (Ayers and Scarlott, 1952).

Without energy, the wheels of industry do not turn, no metals are mined and smelted. No cars, trucks, trains, ships or airplanes could be built, and if built, they could not move without energy. Without energy, houses would remain cold and unlighted; food would be uncooked. Our large agricultural areas could not be plowed or planted with the ease and on the vast scale they are today with relatively little human labor. Military defense as we know it today would not exist.


Pope (1996) commented, “If oil wealth is like winning the lottery, nations act like lottery winners: They tend to blow the money”. Some do, and some don’t.

Possibly the last mineral to significantly move people in the United States is the oil in the Bakken Formation in the Williston Basin of North Dakota. People from all across the United States moved to Williston to work in the development of the Bakken Field and all the supporting facilities. Building housing for the inflow of population could not meet demand, forcing people to sleep in their trucks. When the oil is gone, North Dakota will likely return to its agrarian economy, perhaps symbolic of all economies when the exploitation of nonrenewable Earth resources ends, and industrial societies must revert to agrarian economies.

Energy resources have since moved much of the population off the farms and into the cities. Today, with the use of petroleum powered farm machinery, only about two percent of America’s population farms the land, where a hundred years ago the majority of people did. But energy slaves (chiefly oil) now do the farm work, causing another great migration of people to the industrial areas, which, in turn, exist because of abundant energy to run factories.

Oil: A highly complex expensive enterprise. The oil industry plays an important part in countless ways in the lives of nearly all of us. The oil industry in its entirety including the exploration, drilling, production, transportation, refining, petrochemical production, and marketing uses more varied technology than any other industry in the world. These range from space satellites, to the highly complex science of organic chemistry. In between, seismology, directional drilling, drilling in waters a mile or more deep, and putting vast quantities of steam into the ground may be involved, among many other activities. The oil industry invests more money, by far, than any other industry in the world to conduct its operations.


I wholeheartedly support Brown’s comments regarding military budgets and priorities. Brown observes that the projected military budget for the U.S. is $492 billion, which is approximately equal to the combined military budgets of all of the rest of the world combined. He proposes an annual U.S. budget of only $161 billion that would include such social goals as universal health care, family planning, adult literacy programs, and universal primary education. Goals and expenditures to benefit the Earth include reforestation, protecting topsoil on cropland, restoring fisheries, restoring rangelands, and protecting biological diversity.

The resource that all warring sides must have is water. Control of water supplies has been a tool in warfare in various ways. In the sixth century B.C., the King of Syria seized water wells as part of his campaign against Arabia. The Inca conquered the desert coastal cities of Peru such as Chan Chan by cutting off their water supply. In feudal times in Europe, castles or other fortresses under siege were vulnerable if they did not have water supplies within their walls. The enemy quickly determined if such was the case. Also, moats filled with water were part of the standard military protection of the day.

In peacetime, control of water can be used as a form of economic warfare. More than 30 nations receive one-third or more of their water from outside their borders. In the case of Egypt, it is 97 percent, Hungary 95 percent, Syria 79 percent, and Iraq 66 percent. With their surface waters chiefly under the control of other countries, these and 16 other nations which obtain more than 50 percent of their surface waters coming from outside their borders are vulnerable to economic water warfare.

Hitler’s oil supplies began to fail. German motorized divisions toward the end of the war suffered markedly from lack of oil. When General George Patton was finally on the move across France with the Germans in full retreat, pipeline specialists from Texas (where else!) followed Patton’s tanks and laid pipeline at a rate of up to 50 miles a day. And there was oil to fill those pipelines, because during World War II, the Allies controlled 86 percent of the world’s oil supply.

To obtain markets for finished industrial goods, and to obtain raw materials, chiefly minerals, for building armaments, and to supply their industrial complex, Germany began to look hungrily at adjacent territories. After the Franco-Prussian War of 1871, Germany annexed iron-rich Alsace-Lorraine. Unfortunately, they later found that the boundaries they set did not include the bulk of the iron deposits because of the geologic structure there. Germany captured the surface outcrop area, but the iron-formation beds, with most of the iron ore, dipped westward into French territory. They apparently had a good military department, but a poor geology department. Germany fought the First World War in part “to correct the error of 1871.” After losing World War I, however, Germany had to give up this territory.

The experience of World War I made both the Allies and the Central Powers (Germany and its allies) keenly aware of the need for minerals with which to conduct military operations. Immediate and extensive post-war mineral exploration and development programs for both foreign and domestic sources were started by Britain and France. Because these countries, especially Great Britain, still had extensive colonial holdings, there was a lot of territory to explore. Germany, in contrast, lost all its foreign possessions, which was one of the circumstances that precipitated World War II. As Germany prepared for World War II in the 1930s under Hitler, it had been unable to regain its colonies, so it began to annex its immediate neighbors who possessed useful resources. Austria was next door and had some small iron deposits. It was the first to be taken. Czechoslovakia contained famous mining districts with fairly large iron deposits, and a variety of other metals. Czechoslovakia was taken next. With the early defeat of France in World War II, Germany regained control of the iron of Alsace-Lorraine.

Growing industrialization, with its huge demand for raw materials, growing populations, and the desire for a higher standard of living were the immediate causes for the intensified search for resources. And in the background was the thought that should another war come, the materials must be available in order to survive and win it. Hitler

In World War II, once Germany had conquered France and driven the British back across the English Channel, Hitler turned east. In keeping with his belief in lebensraum (the territory necessary for national existence and economic self-sufficiency), Hitler long held the view that only the Soviet Union had adequate land and minerals to take care of Germany’s needs (Rich, 1973). After taking this region, Hitler said, “We shall become the most self-supporting state in every respect in the world. Timber we will have in abundance, iron in unlimited quantities, and the greatest manganese-ore mines in the world, and oil—we shall swim in it.” Hitler turned his armies toward the Urals and the Ukraine. This region, along with the Donets Basin, contains extensive deposits of hematite (high grade iron ore), excellent coking coal, and limestone—the three fundamental ingredients for steel-making.

Oil to move implements of war It was not only metals that became so clearly evident as important tools of warfare in World War I. Energy, chiefly in the form of that relative newcomer, oil, was obviously going to be very significant. Some of the Allied ships bringing troops and supplies across the Atlantic from the United States to Europe were coal-fired and some were oil-fired. The oil-powered ships were the better and faster vessels, greatly speeding delivery of both troops and equipment. Oil grew more important in warfare. Gasoline-powered tanks made their first appearance on the military scene in World War I. Airplanes, fueled by gasoline, primitive as they were, also came into the war in a limited fashion.

For the first time in a major conflict, trucks replaced horse-drawn vehicles on a large scale. Recognizing this in the time between World War I and World War II, world military establishments began to give serious consideration to oil supplies. This is why Hitler coveted the oilfields of the southern Soviet Union.

By the time Pearl Harbor broke out, all of Europe was under the domination of Hitler. Africa, Latin America, Australia, India, and even parts of China remained accessible to the U.S. The only competitive customer for the mineral exports of these vast areas was the United Kingdom. An agency called the Combined Raw Materials Board was created by the U.S. and the U.K. and a coordinated buying program was launched. It was possible to fight World War II without an actual shortage of these critical materials. But the key was the fact that we retained access to Latin America, to all of Africa, to most of Asia and to Australia. Had we been denied access to them, we would have been in trouble.

After it opened up to the rest of the world in the late 1800s, Japan resolved to become an empire, but it had very few natural resources (Abbott, 1916). The nearest significant coal and iron deposits were in northern China (Manchuria). In the early twentieth century, as an emerging Pacific power, Japan was increasingly in need of raw materials, particularly metals, coal, and oil to equip its military. Japan invaded Manchuria for its deposits of iron and coal, and later southeastern Asia for more raw materials. As the military seized such resources, it also gained materials for Japan’s expanding civilian economy.

If Japan had possessed adequate oil deposits within its own borders, the Japanese probably would not have gone to war with the United States.

However, as the war continued and the United States was gradually able to cut off oil shipments to Japan, the matter of fuel became increasingly desperate for the Japanese. In the waning days of the war, Japan resorted to “kamikaze” (Japanese for “divine wind”) action – suicide pilots who would crash their planes into the ever-closer ships of the U.S. Navy. This was in large part a matter of fuel efficiency, because the planes would be given just enough fuel to fly one way. They were not expected to return and the pilots were told so. More than 4,000 young Japanese men were sacrificed this way. It was a desperate way of stretching fuel supplies. If a plane did hit a U.S. Navy ship, this would be a highly effective use of a small amount of fuel. Some planes did get through the anti-aircraft barrages and did considerable damage, but many more kamikaze planes were shot down. Finally, there was not enough oil to keep either the Japanese navy or air force operational.

Chile and nitrates.  For a long time there was a boundary question between Chile and Bolivia, but no one really cared about the exceedingly desolate northern Atacama Desert territory until nitrates were discovered there in great quantity. These were the causes of the Nitrate War. Chile declared war on both Peru and Bolivia on April 5, 1879. The Chileans were victorious and obtained all of the Atacama Desert area by the Treaty of Ancón in 1883. The victory was of great economic value to Chile. From 1879 to 1889, the duty on nitrate exports alone reached more than $557 million dollars, a very considerable sum in those days. The total value of nitrate exports in that period exceeded $1.4 billion. Nitrates have continued to be an important Chilean export, although the synthetic production of nitrates has reduced their value.

South China Sea. This is a region where oil was recently discovered, and the potential for future modest discoveries is good. The Spratly Islands dot the area and consist of about a hundred coral reefs, tips of rocks, and 21 slightly submerged landforms. The emergent land is less than two-square miles in total. Although these islands are located about 700 miles from China and only 100 miles from the Philippines, China claims a huge swathe of sea that overlaps and conflicts with the claims of other nations. Indeed, ownership in the strategic South China Sea is asserted in whole or in part by nine nation states, mainly China, which claims at least 80 percent, and Vietnam. In 1988, China and Vietnam clashed violently over the Spratly Islands, and in 2012, China and the Philippines are in a tense naval standoff over their competing claims there as well. All nine nations have set up little outposts on different rocks. Despite lacking clear ownership, both Vietnam and China have issued lease blocks to oil companies. In the meantime, oil-short China is building its navy and expanding its presence in the South China Sea. China needs much more oil as it plans to greatly enlarge its road network, increase motor vehicle production, and fuel its rapid industrialization, and transport system.

Many think that water may be the oil of the future relative to resource disputes. If so, nations like Egypt may face critical decisions about military action for its very survival, because nearly all of the water from its lifeblood, the Nile River, originates in other nations which are now building dams. Up from just 28 million people in 1960, Egypt now has 82 million and is expected to have 111 million in 2025, and 124 million in 2050. Clearly, Egypt has some critical times ahead. Thirsty and hungry people become desperate people.

Colombia has an on-going drug war. It is the world’s largest producer of cocaine, 90 percent of which goes to the United States. Oil accounts for a third of Colombia’s export earnings. Drug-running rebels have tried to cut the government’s oil income. Since 1986, they have attacked the country’s major pipelines more than 900 times. In 2001, they put a pipeline out of operation for 266 days, which cost the government nearly $600 million in lost revenue (Renner, 2002).

In the Democratic Republic of the Congo (formerly Zaire), major conflicts between rival groups over very rich deposits of cobalt, tin, copper, molybdenum, and diamonds have resulted in the killing and displacement of several million people. This has given rise to the evocative term “blood diamonds,” which have also helped spark and sustain cruel insurgencies in Angola, Liberia, Sierra Leone, and Ivory Coast.

Russia has been obtaining about 60% of its hard currency from the sale of oil and gas. Without this income, Russia would have a difficult time supplying its military with needed technological equipment such as state-of-the-art computers. Oil and gas earnings also buy grain, something in chronic short supply in Russia. Grain bolsters the civilian economy, but grain also feeds Russia’s large standing armies.

Will the Russia of the future prove to be a friendly neighbor to the western nations, or will it return to its political isolation and antagonism toward the West, using its huge coal, gas, and metal resources as weapons? The Cold War was a time when the Soviet Union was active in economic warfare against the NATO allies in many regions. The reality of Russia’s nearly complete self-sufficiency in minerals and energy minerals compared with other industrial nations will be important in future world affairs. With the largest and broadest energy and mineral resource base of any nation, Russia could do very well economically.

Oil: The United States, China, and Japan. In order, these are the three largest oil-consuming nations in the world, and their economies are vitally dependent on oil at the present time. It is doubtful that alternative energy sources can arrive in quantity or in time to replace diminishing quantities of oil. The result will be an intensified scramble for the remaining world oil reserves, in competition, of course, with all economies that use oil.

How this war for oil resources will be conducted is not entirely clear, but to some degree it is already in progress. All three countries are engaged in a worldwide search for oil, both through their oil companies and also through investments in various operations in oil regions—pipelines, refineries, and others. In the iron-mining region of northeastern Minnesota, for example, Chinese investment has reopened a mine and built a pelletizing plant (to upgrade the low-grade taconite iron ore—only 30 percent iron). They are shipping the product to China. This trend will continue, and the outcome is uncertain as we create a globalized economy. China is the 800-pound gorilla on the scene.

The cheap labor weapon. Economic warfare over the past two decades is also seen taking the place in the area of labor costs. Low-wage countries aided by free trade agreements have been able to transfer the manufacture of many products from industrialized countries, particularly the United States, to their own shores. This has created huge trade imbalances. China, in particular, has a large positive trade balance with the rest of the world, especially the United States.

Armed with U. S. dollars and other foreign currencies, China, and to a lesser extent India, have embarked on a worldwide buying spree to obtain a variety of raw materials. Particular investment targets are Canada for its metal resources; Chile for its metals; Venezuela for its oil; and Australia for its metals, natural gas, and coal. This investment strategy is intensifying, particularly by China as it also reaches into Africa for both metals and oil.

One result of low-wage competition for the United States has been a large decline in its manufacturing base. The increasing deficit in international balance of payments threatens the stability of the dollar. Dollars exported to pay for things previously produced domestically, come back to compete with the United States in the form of buying power of the cheap labor countries who use the dollar to bid against the United States for natural resources worldwide. Thanks to its trade surpluses, China has had a great inflow of dollars to use for worldwide resource acquisition.

War or Reason? Struggles for resources, especially oil, will continue as population pressures grow and resources become increasingly scarce (Tanzier, 1980). Will this worldwide increased demand for energy and minerals, compounded by the current exponential growth in population, be resolved by reason, or will the struggle result in war and anarchy as suggested in the very thought-provoking book by Robert D. Kaplan, The Coming Anarchy (Kaplan, 2000)? Around the world, reason and goodwill are in shorter supply than they should be. By myriad adjustments in lifestyles and economics, the world must adjust to the new realities of resource availability. It is clear that the future cannot supply a continually growing population with resources as we use them now.

Wilderness to World Power. The establishment of a government by a free people, and an open economic system together with a great variety of abundant and easily exploited natural resources, destined the United States to change from a three-million square mile wilderness to the wealthiest and most powerful nation the world had ever seen in less than 300 years. In terms of the total energy minerals and minerals spectrum, the United States was without equal among nations at the time the Declaration of Independence was signed. Also, the millions of acres of fertile soil in the nation’s heartland favored by a good growing season are unmatched in the world.

Part of its good fortune was that the United States was established at the right time. The U.S. emerged as a nation shortly after the Industrial Revolution. It started in Great Britain and promptly spread to Europe, and then to the United States. New inventions and new technologies developed rapidly. The technologies enabled people to extract and process important raw materials like iron ore in great quantities. The invention of the steam engine fostered the development of the railroad, which was able to haul raw materials cheaply and in great quantities to the factories and distribute finished products across the country.

This combination of the right time (during the spread of the Industrial Revolution), together with a poor but ambitious free people, and the right place (three-million square miles of virgin land with a tremendous variety and quantity of mineral resources), was responsible for producing the great economic and military might of the United States in the first three-hundred years of its existence.

Of the three factors, the great variety and abundance of mineral and energy resources was probably the most important. Without these, even a free people would have seen the industrial age largely bypass them, or else arrive much later. But the rich geological endowment of the United States shaped its destiny.

One might suggest that Canada also had the same potential as did the United States, but Canada has somewhat less conveniently deposited mineral resources. It does not have high-grade iron and coal adjacent to the inexpensive Great Lakes transportation system. Little oil was discovered until recently in eastern Canada (which is offshore), whereas there were numerous oil fields in Pennsylvania, Ohio, West Virginia, Kentucky, and Indiana where people first settled and industry was established in the United States. There is no region in Canada comparable to the prolific Gulf Coast region of the United States where the famous Spindletop oil gusher discovery was made in 1901. Canada’s major oil industry really dates only from post-World War II, and, although important, it does not rival the size and wide geographic distribution of oil fields all across the United States. Also, Canada’s northern geographic position with its hostile cold climate and the difficult terrain of lakes, bogs, swamps, and large areas of tundra underlain by permafrost delayed its development except for roughly a two-hundred mile wide strip of land adjacent to the United States.

It may be, however, that the best is yet to come for Canada. The world’s largest deposits of oil sands, for example, will be an asset for many decades to come, and large high-grade iron ore deposits remain to be exploited. The United States has already depleted its high-quality iron deposits as part of the price for its phenomenal economic growth.

Russia would miss one advantage the United States had in its rapid economic rise, a relatively small population compared to large mineral wealth. Today Russia would have to spread its geological wealth over a far greater number of people then the United States had when it rose to its affluent world position. In 1880, as the United States began to reap the advantages of the Industrial Revolution, the population was approximately 50 million. The Russian population today is about 142 million. Large mineral wealth spread over a small population has the potential of raising the standard of living. This has been clearly illustrated in such countries as Saudi Arabia and Kuwait. Russia missed a great opportunity. Now, although it does have mineral wealth, it has more people. And Russian oil production has peaked before the benefits of its oil riches have been enjoyed to any large degree by the average citizen. The United States combined its oil wealth with its world class motor vehicle industry to bring a degree of affluence and lifestyle for the average citizen, that would be difficult if not impossible for Russia to duplicate now.

For many years, the United States was the world’s dominant producer of most vital raw materials. The United States was, until 1982, the world’s largest copper producer. Until about 1950, it produced half the world’s oil. It has been the leader in molybdenum, zinc, and lead output, and it still has the largest recoverable coal reserves in the world. Following the 1859 discovery of oil, the United States was completely self-sufficient in petroleum for more than 100 years. Ultimately it was the possession of large oil resources and U. S. self-sufficiency that brought about the reversal of power between Great Britain and the United States. Until World War I, coal was the dominant energy source, and British coal mines were a major source. After World War I, oil became the major fuel on which the world depended. Britain at that time had no oil production. With the arrival of the oil age, economic power shifted to the United States. One might note that the dependence of the United States on foreign oil has substantially decreased the relative world economic strength of the United States,

By 1909, the United States was producing more oil than the rest of the world combined, and continued to do so through 1950. With the discovery of oil found all across the U.S., and the development of trucks and automobiles, soon a nationwide network of roads and service stations was established. Travel came into vogue, because oil was inexpensive. The average citizen could afford it. Thus the great travel boom arrived and the novel idea of motels spread across the country. The travel industry became an important part of the U. S. economy.

In the early and middle decades of the twentieth century, mineral and energy mineral resources in the U.S. were in seemingly endless supply. The United States provided its allies with vital energy and mineral resources first to win World War I, when it was said that “the Allies floated to victory on a sea of oil.” U.S. oil supplies again played a vital role in World War II. Both Japan and Germany lacked oil. In terms of metals, it has been said that both wars were fought from the great hole in the ground which is the Hull-Rust iron mine on the north side of Hibbing, Minnesota.

With cheap and abundant mineral and energy mineral resources, the United States enjoyed an unprecedented rapid rise to the world’s highest material standard of living and to economic and military pre-eminence.

When considering the future, as compared with the past, it is important to note that the United States achieved its industrial position and its high standard of living on abundant, cheap energy, and rich mineral resources. It took enormous energy to mine and smelt the ores to produce the metals vital to industrial development. It took vast amounts of energy to conquer the frontier and do the work needed to convert a raw wilderness into the world’s largest, most affluent society. During most of the time between 1940 and 1960, the United States enjoyed $3-a-barrel oil, natural gas costing about 15 cents a thousand cubic feet, and coal costing about $4 a ton, all available within the United States. Abundant and inexpensive energy sources and high-grade iron and copper deposits were exceedingly helpful to a young and rapidly growing nation. High-grade metal deposits take less energy to mine and smelt than low-grade deposits do.

The combination of high-grade ores and inexpensive energy combined to provide very inexpensive finished products that fostered economic growth. Conversely, as ore grade decreases, it takes more energy to produce the same amount of metal as previously. Combined with higher energy costs, the result is substantially higher finished product costs.

The United States’ peak of power may have been symbolized by its use of the ultimate energy weapon, the atomic bomb, to end World War II in 1945. At the time, the United States was the sole owner of this fearsome form of energy. It was the possession of a particular metal, uranium, within its borders that allowed the United States to arrive at this zenith of world power. Now this capability is shared by several countries, and the number is growing.

After the breakup of the Soviet Union in the early 1990s, there were those who argued that the United States stood alone as the unrivaled world power. Unlike 1945, however, in the 1990s the United States was no longer self-sufficient in its principal energy need, oil. In fact, it was importing more than half of its supplies, and lacked the ability to reverse the trend. The United States no longer controlled its economic destiny, which was partly in the hand of foreign oil producers. And the continuing imbalance of foreign trade, in which imported oil was the largest single (and growing) factor hurt the prestige and value of the U.S. dollar in world markets.

The United States rose to international economic dominance in record time, but in the process depleted many of its high-grade resources. The rich ores of the Mesabi Iron Range are gone. All the high-grade native copper mines of Upper Michigan are closed. The United States now searches for oil off the frozen north coast of Alaska and in the deep waters of the Gulf of Mexico. The U.S. is no longer nor will it ever be self-sufficient in oil again. Its oil reserves, once the largest in the world, are now dwarfed by those of several other countries. Although it consumes about 25 percent of the world’s oil, the U.S. now contains only about four percent of the estimated conventional proved world oil reserves.

The United States has changed from being an exporter of energy and mineral resources to now being a net importer on an increasingly large scale. In the process, the United States also went from being the world’s largest creditor nation to being the world’s largest debtor nation in less than 20 years. Oil imports now are the single largest item contributing to our annual balance of trade deficit. Other basic commodities are increasingly imported as the U. S. continues to decline in resource self-sufficiency.

The saga of the astonishing rise of the United States to affluence and power will never be duplicated in the world. There are no more virgin continents to exploit. The story of the growth of the United States has been a phenomenon beyond comparison. The question now is: where does it go from here?


No other oil fields the size of the approximately 12 billion-barrel Prudhoe Bay Field are expected to be discovered in Alaska. About 60 miles to the east of Prudhoe Bay, the geology suggests that perhaps a field or fields not as large as Prudhoe Bay might exist in a small portion of the coastal plain of the Arctic National Wildlife Refuge.

Alaska’s oil revenues are certain to decline in the long run, to the point where there will be little or no such income. If future generations of Alaskans are to be considered, then the abundant but transient oil revenues of today must be used differently. The political process has allowed this generation of Alaskans to capture benefits at the expense of future generations by plundering much of the wealth of its nonrenewable oil resource.

Of the initial 12 billion barrels of oil reserves in the Prudhoe Bay Field, seven billion have been produced. Production has peaked, and is now declining.


This archipelago is the fourth-most populous nation in the world with 240 million people. Until 2009, it was a member of OPEC. Its oil deposits were developed by Shell Oil Company, which began as a trading company that actually dealt in part in seashells when Indonesia was a Dutch colony. This is how the Shell companies got their start, and they still retain the shell symbol. Indonesia was the prize the Japanese needed to keep their war machine going, and they occupied it for a time during World War II. After the war, Indonesia gained independence from the Netherlands, and continued to be an oil exporter. It has now become a net oil importer, with domestic oil demand now exceeding production.

Military spending by oil-rich countries, principally in the Middle East, has overshadowed all other investments. In the 12 years following the first Arab oil embargo in 1973, with the subsequent huge rise in oil prices and concurrent huge increase in revenues for oil producers, the Gulf nations spent more than $640 billion for military purposes. Iraq and Iran spent billions, which served only to finance an eight-year war of attrition ending in stalemate. An estimated million people were killed and many more were wounded. Without the oil money to finance the advanced weapons of war, it is probable that at least the casualty figures would have been less. What a tragic way to waste forever the proceeds from a non-renewable resource.

Now these countries have the latest state-of-the-art weaponry including all sorts of missiles, tanks, jet fighters, helicopters, warships, and other hardware. But there is a question whether or not these nations are safer or happier with all these devices of destruction. Arms shows in the Middle East have become regular events. It is big business. The judgment of history on the way in which some of the temporary oil riches are being spent is likely to be severe. The government-owned oil industry has been ineffective in using oil wealth for general social improvement.


Pemex is not run efficiently, and is grossly overstaffed with more than 108,000 employees.  The oil revenues have not been used to raise the Mexican standard of living. Pemex provides the government with 40 percent of its revenues and pays 70 percent of the cost of running the national electric grid. Exactly where the rest of that tax revenue goes is uncertain.

The Cantarell oil field that supplies 62 percent of Mexico’s total production has peaked and is in steep decline.

Just to maintain Mexico’s oil production, the government will have to invest as much as $100 billion in the coming decade. Taxes prevent Pemex from retaining enough of its earnings to finance needed expenditures. Francisco Rojas, who ran Pemex from 1987 to 1994, referred to Pemex’s decaying infrastructure and lack of money for exploration saying, “ … we are looking at a time bomb….”  

In Mexico in 1996, the Democratic Revolutionary Party (PRD) set up blockades at oil installations in the oil field areas of the southeast coast protesting the actions of Pemex, the Mexican government oil monopoly. The PRD said Pemex had contaminated farm land, had not cleaned up oil spills nor raised living standards as promised, but had diverted its oil money to political ends and into politicians’ pockets. Mexico is another example of how oil may prove to be a destabilizing influence on a country. The national oil company, Pemex, provides 40 percent of government income but production has dropped 30 percent from its peak in 2004. In 2009, there was a substantial cut in government employment (10,000 workers), increased personal and corporate income taxes ($13 billion), and reduced subsidies for things such as electric power. The country was living on a diminishing resource, and now “It’s crunch time in Mexico” (Smith, 2009). How this increased austerity will affect Mexican social and economic structures is not yet clear, but it will surely do so as it will in all countries dependent on income from nonrenewable resources.


This is the largest African nation in terms of population, with 162 million people and a growth rate projected to increase its population to 237 million by 2025, and 437 million by 2050 (Population Reference Bureau, 2011). Nigeria remains beset with problems. It is rated as one of the most corrupt regimes in the world. Lack of civil control has reached the point that Shell Oil Company says it may not be able to continue operations there because of the ongoing sabotage of equipment. With corruption, lack of civil order, growing religion-based terrorism, a fast-growing population – already the largest of any African nation — the future for Nigeria is dim. A jihadist terrorist organization — Boko Haram — whose name translates from the Hausa language to “Western education is sacrilege,” and which began attacking Christian targets in 2010, is only the latest threat to Nigeria’s fragile stability. Oil revenues surely have not been used as wisely as they might have. Nigeria has about 37-billion barrels of oil reserves. And if civil order can be maintained, there are fair prospects for additional discoveries. But Nigerians themselves lack the ability to conduct oil operations, so foreign technology and investments are required. The country’s production is expected to peak about now.

When the day arrives that Nigeria is not oil rich, it may revert back to the bloody civil wars that marked the country 30 years ago. Today, even with oil riches, or perhaps because of them, corruption and civil unrest continue to plague Nigeria.


About 2% of Norway’s land is arable. There is not a drop of oil in Norway’s largely igneous rock terrain. Norway has always had to live in considerable part from the sea. Norway has used a lot of their oil revenues to keep unemployment low. Billions of dollars of petroleum revenues have been poured into what turned out to be money-losing projects in agriculture, iron mining, smelters, and fishing in order to keep people employed. This is a temporary fit, and does not build a sound economic base for the long term. Norway’s oil reserves are about 5.3 billion barrels. Production peaked in 2001 and is now in decline. The resulting decline in oil revenue will be a problem, but not so much as in countries with a high population growth rate. Norway’s population of 5.0 million has a very low growth rate of about 0.4 percent annually bringing its projected expected population to 5.6 million in 2025 and 6.6 million by 2050.


In spite of Venezuela’s rapid population growth and associated social needs, President Hugo Chavez purchased seven Russian MIGs, and a fleet of Russian attack helicopters in 2004. In 2005, he bought 100,000 Russian AK-47 rifles. Flush with the money from high oil prices, President Chavez spent over four billion dollars (equivalent) in 2005 and 2006 buying additional military equipment, making Venezuela the most heavily armed country in Latin America. Since 2005, Venezuela has signed contracts with Russia for 24 Sukhoi fighter jets, 50 transport and attack helicopters, and 100,000 more assault rifles. Venezuela also has plans to open Latin America’s first Kalashnikov factory to produce rifles in the city of Maracay.

In Venezuela in 1989, there may have been a preview of what could happen more widely when income from a depletable resource, such as petroleum or metals, declines. Oil income began to falter. The government had to change its free-spending ways that were based on abundant oil income from 1974 to 1979, when oil prices moved up very rapidly. It started budget cutting as oil prices declined. When subsidized bus fares were raised along with previously cheap gasoline prices, riots erupted in Caracas and 17 other cities. More than 300 persons were killed, 2,000 were injured, and several thousand arrested. The government had to rescind the increases. When the price of oil dropped in 2008 from $147 a barrel to less than $60, Venezuela’s oil-dependent economy was severely affected.

Venezuelan President Hugo Chavez began running into problems. In 2005, Venezuela’s oil production declined to 2.2 million barrels a day from its peak of approximately 3.7 million barrels a day several years earlier. To maintain support for his regime, President Chavez diverted more and more of the national oil income to financing growth in social programs so there was not enough capital left in the industry to keep oil production stable, much less increase it.

Venezuela’s social structure, in a country with a growing number of poor, is under severe strain. Recognizing the need to help the poor is commendable. As noted elsewhere, this diverts money needed to maintain oil production, so population and population growth are in conflict with preserving the resource that supports it. A smaller population would help considerably. But Venezuela’s population is 29 million and is projected to reach 35.4 million in 2025, and 42 million by 2050. Oil production and the income from it cannot possibly be increased proportionately. As in other oil-rich nations, oil revenues in Venezuela have not kept pace with the growth in population and the related growth in the costs of the social services created in earlier, more affluent oil income years.

Venezuela’s situation with its 29 million people and daily oil production of 2.2 million barrels, can be contrasted to Saudi Arabia with 28 million people and daily production of more than nine million barrels. Saudi oil is also higher quality and brings a better price than Venezuelan heavy crude. So Venezuela, with a slightly larger population, is on an oilincome diet less than one-fourth that of Saudi Arabia. Both countries are almost totally dependent on oil income for foreign exchange.


The world’s largest geothermal electric generating plant is located at The Geysers, about 70 miles north of San Francisco. Electricity was first produced there in 1960. More than 2,200 megawatts was eventually being generated, the equivalent of two large dams, and enough to supply the electric power needs of about one and one-half million people. However, the field was apparently over-drilled, and production eventually fell to about 1100 megawatts. When geothermal energy is used for electric power generation, it is nonrenewable because eventually the reservoirs of steam and/or hot water will be depleted to the point where they are no longer capable of sustaining

electric power generation. The time to depletion is variously estimated to range from 40 to 100 years in most geothermal electric power fields. However, after being shut down over a period of many hundreds or perhaps thousands of years, the field will recover and could be used again, because the heat will still be there. It is only the hydro system that gathers the heat from fractured hot rocks and brings it to the well bore that becomes exhausted.

For this reason, geothermal energy used for electric power generation in a practical sense does not appear to be a renewable resource. There is, however, technology being tested which may modify this conclusion. In some geothermal fields, waste water is being injected back into the reservoir to see if the reservoir level and pressure can be maintained without reducing the temperature. At The Geysers field in northern California, a 65-kilometer pipeline was recently completed bringing waste water north from Santa Rosa for injection into the geothermal field. An earlier project brought water from a lake that resulted in a recovery of 68 megawatts of power and slowed the area’s pressure decline. If this technology continues to be successful, it can materially extend the life of geothermal electric generating fields. With proper management, it could make geothermal electric power a sustainable energy resource.

Worldwide geothermal electric power. Currently the installed capacity of geothermal-powered electric generating plants totals more than 10,000 megawatts. This is the equivalent of about seven to nine conventional coal-fired plants. Leading countries, in declining order, are the United States (2,685 MW); Philippines (1,970 MW); Indonesia (992 MW); Mexico (953 MW); Italy (810 MW); Japan (535 MW); New Zealand (472 MW); and Iceland (421 MW).

Renewable for space heating? When used for space heating, hot water usage can be controlled to be kept in balance with the natural recharge of the hydro system which brings the heat from the permeable hot rocks to the well bore. In this case, geothermal energy is a renewable resource. Thus, depending on its end use, geothermal energy can be thought of either as renewable or non-renewable. Even when used for space heating, the geothermal reservoir can become depleted if it is over-used. This seems to be the case in several of the district heating systems in southern Idaho, and at Klamath Falls, Oregon, where studies of this problem are under way. However, using geothermal water for space heating is its most efficient use and it should be pursued. The efficiency stems from the fact that there is no change from one energy form to another. When geothermal water is used to generate electric power, heat energy is changed to mechanical energy and then to electrical energy. Any change in energy form results in an energy loss (second law of thermodynamics).

The lower-temperature waters that can be used for space heating are far more abundant and widespread than the high-temperature waters required for efficient electric power generation. Even where there is no especially warm water to use, the general heat flow of the Earth can be tapped by using groundwater heat pumps, which are efficient in most temperate areas, and better in some places than standard air-to-air heat pumps.

Use of Earth’s natural heat flow It is feasible, particularly in a hilly setting, to build a split-level house with part of it below ground level. In colder countries, in particular, the natural heat flow of the Earth will add to the warmth of the house in the winter. Because it is a steady temperature, it also can have a cooling effect in the summer. Such an arrangement is a natural air conditioner. Some houses are built almost entirely underground. Whereas this requires more power for lighting, there is a net reduction in power use because both heating and cooling take far more energy than lighting does. It is also land efficient in cases where people grow gardens on the roofs of such dwellings. By using the natural heat flow of the Earth in this fashion, geothermal energy is renewable,


The exploitation of wood and other biomass is removing vegetation in many areas beyond the replacement rate, causing large and fatal landslides, devastating floods (as in Bangladesh, 1988), and widespread erosion and loss of valuable topsoil (Pimentel and Krummel, 1987

In Haiti, which was once nearly all forested, only two percent of the land is now, because the demand for charcoal, an important fuel for cooking and household use, far exceeds the reforestation rate

In the countryside around Bogota, Colombia, the highlands of Peru, and throughout much of India, Pakistan, Bangladesh, Nepal, and other parts of Asia including China, in Central America (Guatemala, Mexico, Honduras), and especially in Africa there is a serious firewood supply problem. Depleting forests and brushy groundcover has harmed the soil, both by erosion and from the loss of biomass important to soil health. It is doubtful that the use of wood for fuel can be significantly expanded. In many regions, the forests need to grow back to prevent further erosion and floods, which are already severe. Loss of trees and vegetation is a particular problem in the foothills of the Himalayas where forests once regulated the gradual run-off of water. That has been changed by deforestation and now great floods occur in the lowlands to the south, especially in the densely populated lowlands of Bangladesh. In both India and Bangladesh, deforestation has also resulted in eroded soil filling reservoirs far faster than was projected for dam sites.

Wood is still a useful local fuel for cooking and heating. Some utility companies use wood in small amounts for power generation. However, the woodlands of the world are so important to the health of the environment for preventing erosion, as a sink for carbon dioxide, and in countless other ways that they cannot be used as a sustainable fuel supply in any significant amount.


Dr. T. Stauffer, a research associate at Harvard, said, “The bottom line is that using alcohol to stretch gasoline is like using filet mignon to stretch hamburger.

“Renewable power and fuels will be more expensive than the dirtier sort for the ‘foreseeable future.’ This leaves the clean-energy business largely dependent on government handouts.” (The Economist, 2007).

Although ethanol is commonly thought of as a farm product, it is largely a product of the energy inputs noted, and the oil-based pesticides and fertilizers used to enhance the growing. This fact is conveniently ignored by politicians and others who endorse ethanol as an alternative to gasoline at the same time they berate the oil industry that provides the basis for modern agriculture, including corn production.

Consumer Reports (October, 2006) weighed in on the ethanol issue with a cover article The Ethanol Myth pointing out that because of the lower-energy content of ethanol (27 percent less than gasoline) ethanol may not save as much energy as claimed, and that it greatly reduces the mileage range of cars. In one test case, it reduced car mileage from 450 miles to 300 miles per tank of fuel.

Pimentel and Patzek (2005) estimate that if the entire U.S. corn crop were used to make ethanol, “ … it would replace only 6% of fossil fuel used in the U.S. And because the country has lost over a third of its agricultural topsoil, no large increase in the corn crop is possible.” Pimentel and Patzek (2005) further write: Moreover, the environmental impacts of corn ethanol are enormous. They include severe soil erosion, heavy use of nitrogen fertilizer and pesticides, and a significant contribution to global warming. In addition, each gallon of ethanol requires 1700 gallons of water (mostly to grow corn) and produces 6 to 12 gallons of noxious organic effluent.

Using food crops such as corn to produce ethanol also raises major ethical concerns. More than 3.7 billion humans in the world are currently undernourished, so the need for grains and other foods is critical. Growing crops to provide fuel squanders resources; better options to reduce our dependence on oil are available. Energy conservation and development of renewable energy sources, such as solar cells and solar-based methanol synthesis, should be given priority.

In terms of gasoline, Smil (2010) estimates that if the entire U.S. corn crop was converted to that use, it would produce an equivalent of less than 15 percent of current U.S. annual consumption.

The impossibility of using methanol as a replacement for oil in the United States is summarized by Pimentel: “If methanol from biomass (33 quads) were used as a substitute for oil in the United States, from 250 to 430 million hectares of land would be needed to supply the raw material. This land area is greater than the 162 million hectares of U.S. cropland now in production” (Pimentel, 1995).  

Biodiesel also has limitations beyond either gasoline or ethanol. The Minnesota Legislature passed a law in 2005 requiring diesel sold in that state to contain 2% biodiesel. This worked fine in the summer, but given the nature of the Minnesota winters, it turned out that even 2% biodiesel in the fuel would congeal and plug the fuel line in cold weather. This aroused the ire of the truck drivers, and the law was temporarily suspended. “It’s not like they weren’t warned” said C. Fords Runge, a University of Minnesota economist who prepared a biodiesel study in 2001 on behalf of a Minnesota trucker trade group (Meyers, 2005). Others had cautioned that there would be problems. “I’d stop short of saying, ‘Ha, I told you so,” said Russell Sheaffer, Vice President of Cummins Power, a regional distributor of Cummins [diesel] engines (Meyers, 2005). B100 (100 percent biodiesel) is not recommended for use in temperatures below 40 F. Decreasing temperatures below 40 F require that increasing amounts of petroleum-derived diesel be blended into the fuel because petroleum-derived diesel does not have such temperature limitations.


Overall, one-third of the topsoil of U.S. cropland has been lost over the past 200 years. Worldwide, degradation of agricultural land is causing irreversible loss of an estimated area of six million hectares (nearly 15 million acres) annually. Soil is being lost from land areas 10 to 40 times faster than the rate of soil renewal, endangering future human food security.


The concept of sustainable growth is analogous to the concept of perpetual motion — both happy illusions that are detached from reality. The former ignores limitations of a finite Earth, and the latter ignores the second law of thermodynamics.

Growth in population creates a tremendous impediment to any program to solve the world’s energy problem. The nearly 80 million people being added each year to world population is more than the combined population of The Netherlands and France.

“The gain in realistic energy conservation efforts would be nullified within a decade by population growth.” Keep this statement in mind whenever a serious discussion of energy problems comes up. It is almost always overlooked.

The terms “smart growth” or “managed growth” seems to make people feel better, and they believe the problem of growth is being solved. But growth is growth by whatever name it is called. Smart or managed growth is analogous to moving the deck chairs on the Titanic closer together, and finally stacking them on top of one another. This simply results in the ship going down in a more organized manner than it would otherwise.

Herman Daly is one of few economists who understands the limits of a finite Earth. As early as 1987, in “The Steady-State Economy: Alternative to Growthmania” he related his concerns about “growthmania” and the ecosystem with the observations: The economy grows in physical scale but the ecosystem does not…. Standard economics does not ask how large the economy should be relative to the ecosystem, but this is the main question posed by steady-state economics…. Standard economics…is indifferent to the scale of aggregate resource use. In fact, it promotes an ever-expanding scale of resource use in appealing to growth as the cure for all economic and social ills…steady-state economics stresses the optimum scale of resource use relative to the ecosystem.

“Growthmania” (In growth we trust.) is the current guiding creed of both industry and government and of both main political parties in the U.S.. Chambers of commerce enthusiastically and unanimously promote it. This century will show it to be a false pursuit, even a delusion.

Abernethy (1993) makes the important observation that the carrying capacity of a region is not constant: Life support systems deteriorate from overuse and are less able to support life. This means that overpopulation in one period decreases the future number of people who can be maintained without aggravating the damage. The carrying capacity does not remain constant. It shrinks.

 Nor is the solution recycling because 100% recovery cannot be achieved. Some is inevitably lost in the process. Furthermore, to recycle materials requires energy.

One of the most difficult problems is how to stabilize population size, and at what level? The issue of population size is frequently ignored, and when it is considered, it is treated very cautiously because it involves delicate cultural, religious, and racial matters. But some population size must be assumed to rationally describe what resources and technologies would be required to sustain humans indefinitely.

Pimentel and Pimentel (1979) and others at Cornell University have made perhaps the most comprehensive and quantitative study of “sustainability,” relating it to the two most vital parts of our resource base — soil and water. “For erosion under agricultural conditions, we should be losing less than 1 ton per hectare per year for sustainable farming. For groundwater resources, we should be pumping no more than 0.1 percent of the total aquifer for use.” But, we rarely manage these two vital resources based on these criteria. Pimentel et al. (1994), have suggested a figure of about two billion as the sustainable population of the Earth, and about 100 million for the United States.

The term “sustainable development” is commonly used with optimism that implies the growth trends we now experience can really be indefinitely sustained. Economists, in particular, are very fond of it. So are real estate developers and chambers of commerce. To meet objections about the continuing growth of various projects, the term “smart growth” has been invented and is widely used.

However, as Bartlett (1997a) pointed out: “The claim is made that growth management will save the environment. Whether the growth is smart or dumb, the growth destroys the environment.

Problems relating to “sustainability” come in many forms. Land use and food production are important issues. From 1980 to 2002, the U.S. per capita agricultural land declined from 1.5 acres to one acre. At the same time, population increased by 60 million. For the first time, the United States became a net importer of agricultural products (Hartmann, 2006).

In the U.S., cities occupy only 3% percent of the land area, but 26% of the best agricultural land.

We talk about energy conservation as a way to balance demand and supply. But, the goal is constantly overwhelmed by population growth. California is a good example. “Per capita energy use dropped 5% between 1979 and 1999. However, during that same 20 years the state’s population grew 43% largely as a result of immigration” (Hartmann, 2006). In spite of the per capita reduction in energy use (conservation), the amount of energy used in California increased by 93%.

As the British writer, Bligh, has stated: “Contraception is so much kinder than starvation and genocide.

Professor James Duguid (2004) from Scotland has made this observation on individual nation sustainability: The guiding ethical principle should be that each nation should live within the resources of its own country, with only such trade in surpluses as is beneficial to all. None should depend on foreign aid, on large imports, on exporting surplus people, or in otherwise appropriating the biocapacity of other countries.

In their book, The Lessons of History (1968), Will and Ariel Durant wrote: “In the last 3,421 years of recorded history only 268 have seen no war … . The causes of war are the same as the causes of competition among individuals: acquisitiveness, pugnacity, and pride, the desire for food, land, materials, fuels, mastery

Many people now living will see the year 2050. The twentieth and twenty-first centuries, in their beginning and ending, will be vastly different from any other back-to-back centuries the world has seen, or probably ever will see. Just as those alive in 1900 could not have foreseen the changes that occurred in the next 50 years, we cannot foresee the changes that will occur in the next 50 years. But it is safe to say that energy and population will be among the most prominent things to change. Perhaps the most difficult thing to visualize is what sort of social structures will arise in response to the new resource and energy paradigm. What we do know is the changes are likely to be profound. Because increasing depletion is a new paradigm, history offers no guidance on the future.


Some cities have efficient sewer systems, some do not. Forty percent of world population has no access to sewers, and millions of gallons of raw sewage are put daily into the remaining already degraded wetlands and rivers, sometimes called the Earth’s kidneys. They can no longer absorb it all. The scale of this universal human pollution problem is beginning to grow beyond what nature can effectively recycle back into the environment (George, 2008).

The rapid rise in jet fuel and gasoline prices during 2004-2007 in the U.S. was exacerbated by hurricanes damaging and destroying offshore drilling and production platforms and by reduced refinery output.

Asphalt paves 94 percent of the roads in the United States.  This is a total of about four million miles, and is the basis of our entire ground transport infrastructure, except for railroads.

The pre-colonial famines of Europe raised the question: ‘What would happen when the planet’s supply of arable land ran out?’ We have a clear answer. In about 1960 expansion hit its limits and the supply of unfarmed, arable lands came to an end. There was nothing left to plow. What happened was that grain yields tripled. The accepted term for this strange turn of events is the green revolution, though it would be more properly labeled the amber revolution, because it applied exclusively to grains — wheat, rice, and corn. Plant breeders tinkered with the architecture of these three grains so that they could be hyper charged with irrigation water and chemical fertilizers, especially nitrogen…. This innovation meshed nicely with the increased ‘efficiency’ of the industrialized factory-farm system [powered with fossil fuel]…. The way in which the green revolution raised that grain [production] contributed hugely to the population boom, and it is the weight of the population that leaves humanity in its present untenable position…. All together the food-processing industry in the United States uses about ten calories of fossil-fuel energy for every calorie of food it produces.

WIND POWER devices are unsightly, noisy, kill birds, and like solar collectors, deteriorate and have to be replaced with more materials mined from the Earth. Both wind farms and solar farms need access roads to service the equipment and the motor vehicles to do it. In brief, “there is no free lunch” in the use of any alternative energy source with respect to the environment. All have an impact.

Posted in Energy, Walter Youngquist | Tagged , , , , | 5 Comments

Kurt Andersen: “Evil Geniuses” & wealth

Preface.  This is a well-written book with original insights into the economic, cultural, and politics behind how we got to a right-wing wannabe fascist incredibly unfair distribution of wealth. 

But Andersen is unaware that energy, not money, is the basis of our civilization.  Oil production peaked in the U.S. decades ago, and is a large part of why wealth for most people declined and factories moved to China and other nations that not only had cheap labor, but cheap coal and oil.  And that the reason new stuff didn’t keep appearing has to do with the limits of what is possible given physics and the Laws of the Universe. We aren’t going to venture to other planets, let alone galaxies: we used up the fossil fuels need to get there.  Nor will there ever be an AI robot as smart or smarter than we are, because that would require hundreds of trillions of lines of code with 20 trillion errors to fix. I was once a software engineer, even one bad line of code means coming in at 3 AM (Kasan, P. 2011. A.I. Gone awry: the future quest for artificial intelligence. Skeptic).

Since energy wasn’t taken into account, and because I’ve read hundreds of books on economics and politics, many of them at, I skimmed most of the book, and extracted a few bits I thought were interesting below, so it will be disjointed and not flow as it does in the book itself.  Better than this book is “Fantasyland: How America Went Haywire: A 500-Year History” which brilliantly explains why Americans are so nutty and irrational and very fun to read as well.

Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

* * *

Kurt Andersen. 2020. Evil Geniuses: The Unmaking of America: A Recent History. Random House.

Colbert joked on the first episode of his old nightly show, America had become increasingly “divided between those who think with their head and those who know with their heart.

Belief in every sort of make-believe had spun out of control—in religion, science, politics, and lifestyle, all of them merging with entertainment in what I called the fantasy-industrial complex.

Evil Geniuses chronicles the quite deliberate reengineering of our economy and society since the 1960s by a highly rational confederacy of the rich, the right, and big business.

The annual revenues of Goldman Sachs were greater than the annual economic output of two-thirds of the countries on Earth—a treasure chest from which the firm was disbursing the equivalent of $69 million to its CEO and an average of $800,000 apiece to everybody else at the place.

This was 2006, before Wall Street started teetering, before the financial crash, before the Great Recession. The amazing real estate bubble had not yet popped, and the economy was still apparently rocking.

It wasn’t the way things had worked in the modern age, for a century or two. In the past, certainly in my lifetime and that of my parents and grandparents, over any given 20-year period, whenever you glanced back, you’d notice how culture and what was deemed current changed unmistakably from top to bottom. Since the dawn of the modern, ordinary people could date cultural artifacts and ephemera of the recent past and previous eras. During the 20th century, each decade had its own signature look and feel.

Starting in the 1990s, that unstoppable flow of modernity—the distinctly new continuously appearing and making styles seem old—somehow slowed and nearly stopped. The dramatic new change in the culture seemed to be that things were no longer dramatically changing. The shortest and simplest answer is that a massive counterreaction to multiple overwhelming waves of newness on multiple fronts, one after another, sent all sorts of Americans, for all sorts of different reasons, to seek the reassurance of familiarity and continuity wherever they could manage to find or fake it.

The first wave was in the 1960s, a decade in which everything seemed relentlessly new new new. Which for several years felt exciting and good to most Americans, and the novelty glut seemed under control by the forces of reason and order. But then came the upheavals of the second half of the 1960s, when society and culture changed startlingly in just a few dozen months. In the early 1970s, exhausted by that flux, still processing the discombobulating changes concerning gender and race and sex and other norms, people all at once started looking fondly back in time at the real and imaginary good old days.

Hollywood revived and celebrated the recent past in a big way, right away, with nostalgia-fests like American Graffiti, Happy Days, and Grease.

The political right rode in on that floodtide of nostalgia, and then, ironically, the old-time every-man-for-himself political economy they reinstalled, less fair and less secure, drove people deeper into their various nostalgic havens for solace.

This new fixation of the culture on the old and the familiar didn’t subside. It became a fixed backward gaze. Then almost without a pause came another wave of disruption and uncertainty, caused by the digital technologies that revolutionized the ways people earned livings and lived, and which made economic life for most people even more insecure. And the culture in turn focused even more compulsively on recycling and rebooting familiar styles and fashions and music and movies and shows.

In 40 years, the share of wealth owned by our richest 1% has doubled, the collective net worth of the bottom half has dropped almost to zero, the median weekly pay for a full-time worker has increased by just 0.1% a year, only the incomes of the top 10% have grown in sync with the economy,

Americans’ boats stopped rising together; most of the boats stopped rising at all. But along with economic inequality reverting to the levels of a century ago and earlier, so has economic insecurity, as well as the corrupting political power of big business and the rich, oligarchy, while economic immobility is almost certainly worse than it’s ever been.

The proliferation of conspiracy theories since the 1960s, so many so preposterous, had the unfortunate effect of making reasonable people ignore real plots in plain sight. Likewise, the good reflex to search for and focus on the complexities and nuances of any story, on grays rather than simple whites and blacks, can tend to blind us to some plain dark truths.

I still resist reducing messy political and economic reality to catchphrases like “vast right-wing conspiracy” and “the system is rigged,” but I discovered that in this case the blunt shorthand is essentially correct.

The reengineering was helped along because the masterminds of the economic right brilliantly used the madly proliferating nostalgia. By dressing up their mean new rich-get-richer system in old-time patriotic drag. By portraying low taxes on the rich and unregulated business and weak unions and a weak federal government as the only ways back to some kind of rugged, frontiersy, stronger, better America. And by choosing as their front man a winsome 1950s actor in a cowboy hat, the very embodiment of a certain flavor of American nostalgia.

Of course, Ronald Reagan didn’t cheerfully announce in 1980 that if Americans elected him, private profit and market values would override all other American values; that as the economy grew nobody but the well-to-do would share in the additional bounty; that many millions of middle-class jobs and careers would vanish, along with fixed private pensions and reliable healthcare; that a college degree would simultaneously become unaffordable and almost essential to earning a good income; that enforcement of antimonopoly laws would end; that meaningful control of political contributions by big business and the rich would be declared unconstitutional; that Washington lobbying would increase by 1,000 percent; that our revived and practically religious deference to business would enable a bizarre American denial of climate science and absolute refusal to treat the climate crisis as a crisis; that after doubling the share of the nation’s income that it took for itself, a deregulated Wall Street would nearly bring down the financial system, ravage the economy, and pay no price for its recklessness; and that the federal government he’d committed to discrediting and undermining would thus be especially ill-equipped to deal with a pandemic and its consequences.

We didn’t pay close enough attention to the fine print and possible downsides. Living in the world actually realized by Reaganism, our political economy remade by big business and the wealthy to maximize the wealth and power of big business and the well-to-do at the expense of everyone else. We were hoodwinked, and we hoodwinked ourselves.

Our wholesale national plunge into nostalgia in the 1970s and afterward was an important part of how we got on the road toward extreme insecurity and inequality, to American economic life more like the era of plutocrats and robber barons of the 1870s.

Unlike longing for a fairer economy of the kind we used to have, which would require a collective decision to bring back, the itch of cultural and social nostalgia is easy for individuals to scratch and keep scratching. So for many Americans, who spent several decades losing their taste for the culturally new and/or getting screwed by a new political economy based on new technology, fantasies about restoring the past have turned pathological. Thus the angriest organized resistance to the new, the nostalgias driving the upsurge of racism and sexism and nativism—which gave us a president who seemed excitingly new because he asserted an impossible dream of restoring the nastily, brutishly old. The recent wave of politicized nostalgia is global, of course, taking over governments from Britain to Russia to India. But those countries at least have the excuse of being ancient.

Earlier I called the rich right and big business and libertarian ideologues highly rational. Selfishness is rational up to a point, even extreme and cruel selfishness, and this elite confederacy won its war by means of cold-blooded rationality. On the other hand, their increasingly essential political allies in this project are among the most irrational, emotional, unreasonable, and confused Americans of all—religious nuts, gun nuts, conspiracy nuts, science-denying nuts, lying-blond-madman-worshiping nuts.

Fantasyland’s magical thinking and conspiracism and mistrust of science fueled the widespread denial of and indifference to the crisis, and fused with the evil geniuses’ immediate, cold-blooded certainty that a rapid restoration of business-as-usual must take precedence over saving economically useless Americans’ lives.

Even before the pandemic and its economic consequences, and before the protests and chaos following the murder of George Floyd, we were facing a do-or-die national test comparable to the big ones we passed in each of the three previous centuries—in the 1930s, the 1850s and ’60s, and the 1770s and ’80s. Forgive the Hero’s Journey talk, but this is America’s Fourth Testing.

We can, in other words, fail to change what needs changing—and thereby guarantee America’s continued decline and fall.

Our forefathers created a nostalgia industry that fictionalized our recent past, turning Daniel Boone and Buffalo Bill Cody into living celebrity-hero artifacts and reenactors of the frontier days, Walden was driven by Henry David Thoreau’s nostalgia for the era of his childhood in the 1820s and ’30s, before railroads and the telegraph, and his dreamy wish “not to live in this restless, nervous, bustling, trivial Nineteenth Century.

America’s tragic flaw is our systemic racism, and it’s a residue of a terrible decision our founders made to resist the new and perpetuate the old: the enslavement of black people. Slavery had ended in most of Europe by the 1500s, but not in its colonies in the New World and elsewhere. France and Spain and Britain outlawed their slave trades and slavery itself decades before the United States did, and they found it unnecessary to fight civil wars over the issue. Tsarist Russia emancipated its serfs before democratic America emancipated its slaves. On abolition we were not early adopters.

White Southern nostalgia was also for the fictional feudal pasts depicted in the novels of Walter Scott, set in ye olde England and Scotland, published in the 1820s and ’30s, and particularly, phenomenally popular in the American South because the fictions served to romanticize their own slave-based neofeudalism. Mark Twain blamed secession and the Civil War on such Southern “love [of] sham chivalries of a brainless and worthless long-vanished society.

We almost only talk about “checks and balances” concerning Washington politics, presidents versus Congress versus the federal courts. But economies—especially modern free-market economies, loosely supervised day to day, operating mostly without government commanders-and-controllers—also need systems of checks and balances.

Nobody but the Rich (and Nearly Rich) Got Richer: 27 Ways the Pie Is Cut Differently Now

Tax Bonanzas for Rich People

  • In 1980 income above $700,000 (in today’s dollars) was taxed at 70 percent by the federal government, but today the top rate is 37 percent. And the richest Americans, who back in the day paid an average of 51 percent in federal, state, and local income taxes combined, now pay just 33 percent.
  • The richest 0.01 percent of Americans, the one in ten thousand families worth an average of $500 million, pay an effective federal income tax rate half what it was in the 1970s.
  • Profits from selling stocks (almost all of which go to rich people) are generally taxed at 20 percent, about half the rate they were taxed in the late 1970s.
  • Stock dividends (half of which go to the richest 1 percent) used to be taxed like salary income, but in 2003 they began getting special treatment—and today the tax on dividend income for the rich is 22 percent, instead of the normal income tax rate of 37 percent.
  • In 1976 one in twelve American heirs—basically anyone inheriting the equivalent of $1 million or more—paid federal estate taxes, and the maximum rate on the largest of those estates was 77 percent. Heirs today get the first $11 million tax-free, and the tax on everything above that is just 40 percent. In 1976 taxes were paid on the estates of the 139,000 richest Americans who died; these days fewer than 2,000 estates each year get taxed at all.

Bonanzas for Big Business

During the 1980s, the amount of corporate income tax paid as a fraction of the whole U.S. economy was cut by more than half, and in the years since, that fraction has been kept at half what it was before 1980.

Since 2000, corporate profits as a fraction of the economy have been 50 or 100 percent higher than they’d been for the previous five decades.

The Rich Are Different: Income

  • Before 1980, all Americans’ incomes grew at the same basic rate as the overall economy. Since 1980, the only people whose incomes have increased at that rate are people with household incomes in the range today of $180,000 to $450,000. People with incomes higher than that, the top 1 percent, have gotten increases much bigger than overall economic growth. (Meanwhile 90 percent of Americans have done worse than the economy overall.)
  • Since 2000, the salaries of the extremely well-paid ($150,000 or more) have increased twice as fast as the salaries of the well-paid ($100,000 to $150,000). Since 1980, the income of the wealthiest 1 percent of Americans has almost tripled.
  • During the 1990s and 2000s, most of the increase in Americans’ income went to the richest 1 percent—and in the years just before and after the Great Recession, they got 95 percent of the income increases.
  • The share of all income going to the ultra-rich—families making $9 million or more per year—is now 5 percent of the total, ten times what it was in the 1970s.
  • During the 2010s, the majority of all personal income in America went to just the top 10 percent, people with household incomes higher than $180,000.

The Rich Are Different: Wealth

  • Of all the stocks and bonds and mutual funds and houses and cars and boats and art and everything else that counts as wealth, the richest fifth of Americans, people with a net worth of about $500,000 or more, now own about four-fifths of it, a much larger share than they owned before the 1980s.
  • The unambiguously rich 1 percent—the million and a half households with a net worth of roughly $10 million or more—own 39 percent of all the wealth, almost twice as large a share as they had in 1980. Since the late 1980s, that wealthiest 1 percent have become $21 trillion wealthier, an average increase of about $12 million per household.
  • That top 1 percent own an even larger share of all the stock owned by Americans—56 percent, a quarter more of the total than they had in the late 1980s.
  • Of the wealth owned by the top 1 percent, more than half is owned by just the richest tenth of them. That is, the top 0.1 percent, one in a thousand American families, worth an average of $100 million apiece, own 22 percent of all the wealth—a share more than three times larger than it was in the 1970s.

Survivors and Losers: Income

  • During the grand decades between World War II and 1980, when U.S. median household income more than doubled, 70 percent of all increases in Americans’ income went to the bottom 90 percent. Since 1980, nobody’s income has doubled except for the richest 1 percent, and the incomes of the entire nonrich 90 percent of Americans have gone up by only one-quarter.
  • The average monthly Social Security retirement benefit more than tripled from 1950 to 1980, adjusted for inflation, but it has increased by just half in the four decades since.
  • During the last forty years, the median weekly pay for Americans working full time has increased by an average of just one-tenth of one percent a year—and for men has actually gone down 4 percent.
  • For the four-fifths of all private sector workers who don’t boss anybody, the average wage today is $23.70 an hour. In 1973, it was $24.29.
  • Forty years ago, a typical high school graduate working full time could earn an income of twice the poverty level, the equivalent of $56,000, enough to support a spouse and two children. Today the four in ten adults who have no more than a high school diploma and work full time earn a median salary of $39,000.
  • In 1980, 20 percent of all income went to the less prosperous half of Americans; by 2012, that share had shrunk to 12 percent.
  • In the 1980s the comfortably middle and upper middle class, the two-fifths of Americans with household incomes that put them below the wealthy top tenth but above the bottom half, earned 37 percent of all the income—almost exactly what their share would be in a perfectly equal society. By 2014, that share had shrunk to 27 percent.

Survivors and Losers: Wealth

  • The upper middle class of the 1980s, people who had a nice house and some savings, the 30 percent just below the top 10 percent, owned 29 percent of all the wealth—once again, almost exactly their share in a perfectly equal society. Today that same comfortable 30 percent own only 17 percent of all the wealth.
  • In 1987 the least-wealthy 60 percent of Americans owned 6 percent of all U.S. wealth. Today that same large majority—people in the middle and the lower-middle and below, households worth less than $175,000—own a third as much, just 2 percent of all the wealth.
  • The combined wealth ($2.5 trillion) of that same large U.S. majority, the 200 million Americans from just above the middle all the way down to the bottom, is less than that of the 607 U.S. billionaires ($3.1 trillion). Therefore a single average American billionaire owns the same as 400,000 average members of the un-wealthy majority, an entire big city’s worth of Americans.
Posted in Distribution of Wealth, Poverty | Tagged , | 2 Comments

Disposal of nuclear waste in municipal landfills

Preface. The pandemic is probably going to enable a lot of bad legislation to be snuck in while attention is focused elsewhere. This proposal is for low-level waste in landfills. But the big problem is that nothing at all is being done to reopen Yucca Mountain or build another waste facility elsewhere for high-level waste, leaving toxic nuclear waste that lasts up to a million years for 50,000 future generations of humans to contend with.

Meanwhile, according to Dan Hirsch, president of the Committee to Bridge the Gap, a nuclear industry watchdog non-profit, Allowing very low-level radioactive waste to be disposed by land burial would be the most massive deregulation of radioactive waste in American history. If you dump radioactive waste in places that aren’t designed to deal with it, it comes back to haunt you. It’s in the air you breathe, the food that you eat, the water you drink (Ross 2020).

More nuclear waste posts here.

Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles,Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report


Frazin, R. 2020. Advocates raise questions about proposal to allow some nuclear waste to be disposed in landfills. The Hill.

A March 6, 2020 Nuclear Regulatory Commission (NRC) proposal would allow for the disposal of some nuclear waste in municipal landfills, rather than a licensed facility.

“What they’re trying to do is prop up a failing industry so that the cost of decommissioning these [nuclear] reactors is reduced so you don’t have to send it to a place that is expensive because it’s designed to safely handle it,” said Dan Hirsch, the former director of the University of California, Santa Cruz’s Program on Environmental and Nuclear Policy.

“I find it just astonishing that they would do that in the midst of the coronavirus pandemic,” he added. “How the NRC can look themselves in the mirror to propose massive deregulation and do it in the midst of the pandemic, I find it just ethically shocking. If they’re going to consider it at all, it should only be considered once the pandemic is behind us,” he said.

Currently, the nuclear waste in question is typically disposed of at licensed waste disposal facilities, which have adequate training and equipment to protect public health.

The proposal would grant some exceptions to this regulation for waste with a cumulative radiation dose level of up to 25 millirem.

According to the NRC, Americans receive an average radiation dose of about 620 millirem each year. A chest x-ray would give off 10 millirem while a full-body CT scan would give a dose of 1,000 millirem.

In a statement on Thursday, Public Employees for Environmental Responsibility Pacific Director Jeff Ruch also criticized the proposal. “NRC’s action could transform most municipal dumps into radioactive repositories, with essentially no safeguards for workers, nearby residents, or adjoining water tables,” he said.


Ross, D. 2020. Critics alarmed by US nuclear agency’s bid to relax rules on radioactive waste. Nuclear Regulatory Commission keen to allow material to be disposed of by ‘land burial’ – with potentially damaging effects. The Guardian

Posted in Nuclear Waste | Tagged , | 5 Comments

Science : No single or combination of alternative energy resources can replace fossil fuels

Preface. Even though this research was from 2002, it is still true today.   There simply are no replacements for the fossil fuels that power our civilization.  If only scientists could violate the laws of thermodynamics and physics.

Even if there were Something Else, we’re running out of time, energy, and mineral resources to replace fossil fuels despite having had all of human history and the last few centuries to find alternatives. Energy transitions take decades. It took 50 years for oil to capture 10% of global energy after it was first drilled in the 1860s, and 30 more years to provide 25% of all energy. It took 70 years for natural gas to go from 1% to 20% of global energy (Smil 2010).

The larger the scale of existing infrastructure, the longer fossil substitution will take. In 2019, wind and solar contributed just 1.3% of total world energy consumption (BP 2020).

Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

* * *

Experts question new energy sources. Oct 31, 2002. AP.

None of the known alternate energy sources are technically ready to take the place of fossil fuels experts say in a new study.

The study by 18 scientists and engineers in university, government and private labs evaluated technologies that would make energy without burning oil, coal or natural gas and found that no single system or combination of systems could replace these fossil fuels.

Hoffert said a combination of renewable energy sources — such as wind and solar power generation, or electrical power beamed from orbiting solar satellites, and nuclear fusion power plants — “are theoretically capable of keeping our civilization going into the future, but the problem is that we haven’t taken the challenge seriously enough to do research in it. We are putting practically nothing into really, seriously studying the problem.”

In 2002, the world’s power consumption was over 12 trillion watts, with 85% of it produced by burning fossil fuels [2008: 15 trillion watts, 81% from fossil fuels].

The study surveyed the entire field of alternate energy and found most systems have serious technical problems such as:

  • Nuclear fission: It is not the final answer because of a shortage of uranium fuel. The proven reserves of uranium would last less than 30 years if nuclear fission was used to make 10 trillion watts of power, about a third of what will be needed by the end of the century.
  • Solar power: To meet the current U.S. needs with solar power would require sun collectors covering some 1,000 square miles. To make the equivalent of 10 trillion watts of added power would require surface arrays covering almost 85,000 square miles, an area larger than the state of Kansas.
  • Wind power: These systems must operate from remote areas and the current power grids could not manage the load.
  • Solar power satellites: Orbiting solar arrays could make electricity, convert it to microwaves and then beam that energy to a ground antenna where it would be converted back to electricity. But to make 10 trillion watts of power would require about 660 space solar power arrays, each about the size of Manhattan, in orbit about 22,000 miles above the Earth.
  • Hydrogen energy: Hydrogen does not exist in pure, natural reservoirs and has to be extracted from natural gas or water. The study found that more carbon dioxide and less energy is produced by the extraction of hydrogen than by burning natural gas directly. Extracting hydrogen from water using solar or wind power is not  “cost effective,”.
  • Nuclear fusion: After decades of study, science still has not learned how to extract power from the fusion of atoms.

Hoffert, Martin I., et al. November 1, 2002. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet, Science. Vol 298,:981-987.


Renewable energy technologies include biomass, solar thermal and photovoltaic, wind, hydropower, ocean thermal, geothermal, and tidal (36). With the exception of firewood and hydroelectricity (close to saturation), these are collectively <1% of global power.

All renewables suffer from low areal power densities.

Biomass plantations can produce carbon-neutral fuels for power plants or transportation, but photosynthesis has too low a power density (∼0.6 W m−2) for biofuels to contribute significantly to climate stabilization (14, 37). (10 TW from biomass requires >10% of Earth’s land surface, comparable to all of human agriculture.)

PV and wind energy (∼15 Wem−2) need less land, but other materials can be limiting [Pacca].

For solar energy, U.S. energy consumption may require a PV array covering 10,000 square miles (a square ∼160 km on each side (26,000 km2) (38). The electrical equivalent of 10 TW (3.3 TWe) requires a surface array ∼470 km on a side (220,000 km2). However, all the PV cells shipped from 1982 to 1998 would only cover ∼3 km2(39). A massive (but not insurmountable) scale-up is required to get 10 to 30 TW equivalent.

More cost-effective PV panels and wind turbines are expected as mass production drives economies of scale. But renewables are intermittent dispersed sources unsuited to baseload without transmission, storage, and power conditioning. Wind power is often available only from remote or offshore locations. Meeting local demand with PV arrays today requires pumped-storage or battery-electric backup systems of comparable or greater capacity (40). “Balance-of-system” infrastructures could evolve from natural gas fuel cells if reformer H2 is replaced by H2from PV or wind electrolysis (Fig. 2A). Reversible electrolyzer and fuel cells offer higher current (and power) per electrode area than batteries, ∼20 kWem−2 for proton exchange membrane (PEM) cells (21). PEM cells need platinum catalysts, >5 × 10−3 kg Pt m−2 (41) (a 10-TW hydrogen flow rate could require 30 times as much as today’s annual world platinum production). Advanced electrical grids would also foster renewables. Even if PV and wind turbine manufacturing rates increased as required, existing grids could not manage the loads. Present hub-and-spoke networks were designed for central power plants, ones that are close to users. Such networks need to be reengineered. Spanning the world electrically evokes Buckminster Fuller’s global grid (Fig. 2B). Even before the discovery of high-temperature superconductivity (42), Fuller envisioned electricity wheeled between day and night hemispheres and pole-to-pole (43). Worldwide deregulation and the free trade of electricity could have buyers and sellers establishing a supply-demand equilibrium to yield a worldwide market price for grid-provided electricity.

Space solar power (SSP) (Fig. 3, A and B) exploits the unique attributes of space to power Earth (44,45). Solar flux is ∼8 times higher in space than the long-term surface average on spinning, cloudy Earth. If theoretical microwave transmission efficiencies (50 to 60%) can be realized, 75 to 100 We could be available at Earth’s surface per m2 of PV array in space, ≤1/4 the area of surface PV arrays of comparable power. In the 1970s, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy (DOE) studied an SSP design with a PV array the size of Manhattan in geostationary orbit [(GEO) 35,800 km above the equator] that beamed power to a 10-km by 13-km surface rectenna with 5 GWeoutput. [10 TW equivalent (3.3 TWe) requires 660 SSP units.] Other architectures, smaller satellites, and newer technologies were explored in the NASA “Fresh Look Study” (46). Alternative locations are 200- to 10,000-km altitude satellite constellations (47), the Moon (48, 49), and the Earth-Sun L2Lagrange exterior point [one of five libration points corotating with the Earth-Sun system (Fig. 3C)] (50). Potentially important for CO2 emission reduction is a demonstration proposed by Japan’s Institute of Space and Aeronautical Science to beam solar energy to developing nations a few degrees from the equator from a satellite in low equatorial orbit (51). Papua New Guinea, Indonesia, Ecuador, and Colombia on the Pacific Rim, and Malaysia, Brazil, Tanzania, and the Maldives have agreed to participate in such experiments (52). A major challenge is reducing or externalizing high launch costs. With adequate research investments, SSP could perhaps be demonstrated in 15 to 20 years and deliver electricity to global markets by the latter half of the century (53, 54).

Figure 3

Figure 3. View larger version:In this page  In a new window

Capturing and controlling sun power in space. (A) The power relay satellite, solar power satellite (SPS), and lunar power system all exploit unique attributes of space (high solar flux, lines of sight, lunar materials, shallow gravitational potential well of the Moon). (B) An SPS in a low Earth orbit can be smaller and cheaper than one in geostationary orbit because it does not spread its beam as much; but it does not appear fixed in the sky and has a shorter duty cycle (the fraction of time power is received at a given surface site). (C) Space-based geoengineering. The Lagrange interior point L1 provides an opportunity for radiative forcing to oppose global warming. A 2000-km-diameter parasol near L1 could deflect 2% of incident sunlight, as could aerosols with engineered optical properties injected in the stratosphere.

Fission and Fusion

Nuclear electricity today is fueled by 235U. Bombarding natural U with neutrons of a few eV splits the nucleus, releasing a few hundred million eV (235U + n → fission products + 2.43n + 202 MeV) (55). The235U isotope, 0.72% of natural U, is often enriched to 2 to 3% to make reactor fuel rods. The existing ∼500 nuclear power plants are variants of 235U thermal reactors (56, 57): the light water reactor [(LWR) in both pressurized and boiling versions]; heavy water (CANDU) reactor; graphite-moderated, water-cooled (RBMK) reactors, like Chernobyl; and gas-cooled graphite reactors. LWRs (85% of today’s reactors) are based largely on Hyman Rickover’s water-cooled submarine reactor (58). Loss-of-coolant accidents [Three Mile Island (TMI) and Chernobyl] may be avoidable in the future with “passively safe” reactors (Fig. 4A). Available reactor technology can provide CO2 emission–free electric power, though it poses well-known problems of waste disposal and weapons proliferation.

Figure 4

Figure 4 View larger version: In this page   In a new window

(A) The conventional LWR employs water as both coolant and working fluid (left). The helium-cooled, graphite-moderated, pebble-bed, modular nuclear fission reactor is theoretically immune to loss-of-coolant meltdowns like TMI and Chernobyl (right). (B) The most successful path to fusion has been confining a D-T plasma (in purple) with complex magnetic fields in a tokamak. Breakeven occurs when the plasma triple product (number density × confinement time × temperature) attains a critical value. Recent tokamak performance improvements were capped by near-breakeven [data sources in (68)]. Experimental work on advanced fusion fuel cycles and simpler magnetic confinement schemes like the levitated dipole experiment (LDX) shown are recommended.

The main problem with fission for climate stabilization is fuel. Sailor et al. (58) propose a scenario with235U reactors producing ∼10 TW by 2050. How long before such reactors run out of fuel? Current estimates of U in proven reserves and (ultimately recoverable) resources are 3.4 and 17 million metric tons, respectively (22) [Ores with 500 to 2000 parts per million by weight (ppmw) U are considered recoverable (59)]. This represents 60 to 300 TW-year of primary energy (60). At 10 TW, this would only last 6 to 30 years—hardly a basis for energy policy. Recoverable U may be underestimated. Still, with 30- to 40-year reactor lifetimes, it would be imprudent (at best) to initiate fission scale-up without knowing whether there is enough fuel.

What about U from the seas? Japanese researchers have harvested dissolved U with organic adsorbents from flowing seawater (61). Oceans have 3.2 × 10−6 kg dissolved U m−3 (62)— a 235U energy density of 1.8 MJ m−3. Multiplying by the oceans’ huge volume (1.37 × 1018 m3) gives 4.4 billion metric tons U and 80,000 TW-year in 235U. Runoff and outflow to the sea from all the world’s rivers is 1.2 × 106m3 s−1 (63). Even with 100%235U extraction, the flow rate needed to make reactor fuel at the 10 TW rate is five times as much as this outflow (64). Getting 10 TW primary power from235U in crustal ores or seawater extraction may not be impossible, but it would be a big stretch.

Despite enormous hurdles, the most promising long-term nuclear power source is still fusion (65). Steady progress has been made toward “breakeven” with tokamak (a toroidal near-vacuum chamber) magnetic confinement [Q ≡ (neutron or charged particle energy out)/(energy input to heat plasma) = 1] (Fig. 4B). The focus has been on the deuterium-tritium (D-T) reaction (→ 4He + n + 17.7 MeV). Breakeven requires that the “plasma triple product” satisfy the Lawson criteria: n × τ ×kT ≈ 1 × 1021 m−3 s keV for the D-T reaction, where n is number density; τ, confinement time; T, temperature; and k, Boltzmann’s constant (66, 67). Best results from Princeton (Tokamak Fusion Test Reactor) and Europe (Joint European Torus) are within a factor of two (68). Higher Qs are needed for power reactors: Neutrons penetrating the “first wall” would be absorbed by molten lithium, and excess heat would be transferred to turbogenerators. Tritium (12.3-year half-life) would also be bred in the lithium blanket (n + 6Li → 4He + T + 4.8 MeV). D in the sea is virtually unlimited whether utilized in the D-T reaction or the harder-to-ignite D-D reactions (→ 3He + n + 3.2 MeV and → T + p + 4.0 MeV). If D-T reactors were operational, lithium bred to T could generate 16,000 TW-year (69), twice the thermal energy in fossil fuels. The D-3He reaction (→ 4He + p + 18.3 MeV) is of interest because it yields charged particles directly convertible to electricity (70). Studies of D-3He and D-D burning in inertial confinement fusion targets suggest that central D-T ignitors can spark these reactions. Ignition of D-T–fueled inertial targets and associated energy gains of Q ≥ 10 may be realized in the National Ignition Facility within the next decade. Experiments are under way to test dipole confinement by a superconducting magnet levitated in a vacuum chamber (71), a possible D-3He reactor prototype. Rare on Earth, 3He may someday be cost-effective to mine from the Moon (72). It is even more abundant in gas-giant planetary atmospheres (73). Seawater D and outer planet3He could power civilization longer than any source other than the Sun.

How close, really, are we to using fusion? Devices with a larger size or a larger magnetic field strength are required for net power generation. Until recently, the fusion community was promoting the International Thermonuclear Experimental Reactor (ITER) to test engineering feasibility. Enthusiasm for ITER waned because of the uncertainty in raising the nearly $10 billion needed for construction. The U.S. halted ITER sponsorship in 1998, but there is renewed interest among U.S. fusion scientists to build a smaller-sized, higher-field, non-superconducting experiment or to rejoin participation in a half-sized, redesigned ITER physics experiment. A “burning plasma experiment” could produce net fusion power at an affordable scale and could allow detailed observation of confined plasma during self-heating by hot alpha particles. The Fusion Energy Sciences Act of 2001 calls on DOE to “develop a plan for United States construction of a magnetic fusion burning plasma experiment for the purpose of accelerating scientific understanding of fusion plasmas (74).” This experiment is a critical step to the realization of practical fusion energy. Demonstrating net electric power production from a self-sustaining fusion reactor would be a breakthrough of overwhelming importance but cannot be relied on to aid CO2 stabilization by mid-century.

The conclusion from our 235U fuel analysis is that breeder reactors are needed for fission to significantly displace CO2 emissions by 2050. Innovative breeder technologies include fusion-fission and accelerator-fission hybrids. Fissionable239Pu and/or 233U can be made from238U and 232Th (75). Commercial breeding is illegal today in the United States because of concerns over waste and proliferation (France, Germany, and Japan have also abandoned their breeding programs). Breeding could be more acceptable with safer fuel cycles and transmutation of high-level wastes to benign products (76). Th is the more desirable feedstock: It is three times more abundant than U and 233U is harder to separate and divert to weapons than plutonium. One idea to speed up breeding of 233U is to use tokamak-derived fusion-fission hybrids (68, 77). D-T fusion yields a 3.4-MeV alpha particle and a 14-MeV neutron. The neutron would be used to breed 233U from Th in the fusion blanket. Each fusion neutron would breed about one 233U and one T. Like235U, 233U generates about 200 MeV when it fissions. Fission is energy rich and neutron poor, whereas fusion is energy poor and neutron rich. A single fusion breeder could support perhaps 10 satellite burners, whereas a fission breeder supports perhaps one. A related concept is the particle accelerator-fission hybrid breeder (56): Thirty 3-MeV neutrons result from each 1000-MeV proton accelerated into molten lead; upon injection to a subcritical reactor, these could increase reactivity enough to breed 233U from Th, provide electricity, and power the accelerator efficiently (∼10% of the output). The radiotoxicity of hybrid breeder reactors over time is expected to be substantially below LWRs.

These ideas appear important enough to pursue experimentally, but both fission and fusion are unlikely to play significant roles in climate stabilization without aggressive research and, in the case of fission, without the resolution of outstanding issues of high-level waste disposal and weapons proliferation.

Concluding Remarks

Even as evidence for global warming accumulates, the dependence of civilization on the oxidation of coal, oil, and gas for energy makes an appropriate response difficult. The disparity between what is needed and what can be done without great compromise may become more acute as the global economy grows and as larger reductions in CO2-emitting energy relative to growing total energy demand are required. Energy is critical to global prosperity.

Posted in Alternative Energy, Biomass, Fusion, Hydrogen, Nuclear Power, Orbiting Solar, Peak Oil, Photovoltaic Solar, Wind | Tagged , , , , , | 6 Comments

Utility scale energy storage limited by minerals and geography

Preface. Natural gas is finite, but aside from (pumped) hydropower, natural gas is the main way wind and solar are balanced now. Therefore, a tremendous amount of energy storage will be needed in the future as natural gas declines.

The current total energy storage capacity of the US grid is less than 1%. What little capacity there is comes from pumped hydroelectric storage, which works by pumping water to a reservoir behind a dam when electricity demand is low. When demand is high, the water is released through turbines that generate electricity.

This study has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Using a new metric called “Energy Stored on Invested, ESOI”, they concluded that batteries were the worst performers, while compressed air energy storage (CAES) performed the best, followed by pumped hydro storage (PHS).

But unfortunately, pumped hydro and compressed air energy storage can only contribute a small amount of storage, because there are few places left to put dams and underground salt domes. Eventually, as fossil fuels decline, wind and solar power will need to provide at least 80% or more of the electric power, since biomass doesn’t scale up.  Utility-scale electrochemical battery energy storage is essential to keeping the electric grid up in the future, not only to balance sudden surges and dips in intermittent power, but to provide at least a month of energy storage to provide for the seasonal nature of wind and solar, when neither is contributing power to the grid (Droste-Franke, B. 2015. Review of the need for storage capacity depending on the share of renewable energies in”Electrochemical energy storage for renewable sources and grid balancing”,  Elsevier).

In figure 4 it’s clear that the only energy storage battery that could materially scale up for up to 12 hours of world electricity energy storage is a sodium sulfur battery (Zinc-bromine battery flow batteries could too, but these are not within 10 years of being commercial).

The conclusion of this paper is

“Although many potential short- and long-term energy resources are available to society, the greatest endowments of renewable low-carbon electricity are wind and solar. However, they require load-balancing techniques to mitigate their intermittent and variable nature. Electrical energy storage will allow the use of electricity in renewable-sourced grids with the same demand-centric perspective that is provided today from fossil fuel-sourced grids. The energy capacity required is likely between 4 and 12 hours of average power demand. To build an energy storage infrastructure of this size will require materials and energy at amounts comparable to annual global production values. Unless the cycle life of electrochemical storage technologies is improved, their energy costs will prohibit their deployment. CAES and NaS show the greatest potential for grid storage at global scale. Unless the cycle life of electrochemical storage technologies is improved, their energy costs will prohibit their deployment as a load-balancing solution at global scale”.

I have a chapter in my book “When Trucks stop running” about energy storage batteries that covers this in greater detail.  But to give you an idea of how far utility energy storage is from being able to store just one day of U.S. electricity generation (11.12 TWh), I used data from the Department of Energy (DOE/EPRI 2013) energy storage handbook “Electricity storage handbook in collaboration with NRECA”, to calculate the cost, size, and weight of NaS batteries capable of storing 24 hours of electricity generation in the United States.  The cost would be $40.77 trillion dollars, cover 923 square miles, and weigh a husky 450 million tons.

Sodium Sulfur (NaS) Battery Cost Calculation:

  • NaS Battery 100 MW. Total Plant Cost (TPC) $316,796,550. Energy
    Capacity @ rated depth-of-discharge 86.4 MWh. Size: 200,000 square feet.
  • Weight: 7000,000 lbs, Battery replacement 15 years (DOE/EPRI p. 245).
  • 128,700 NaS batteries needed for 1 day of storage = 11.12 TWh/0.0000864 TWh.
  • $40.77 trillion dollars to replace the battery every 15 years = 128,700 NaS * $316,796,550 TPC.
  • 923 square miles = 200,000 square feet * 128,700 NaS batteries.
  • 450 million short tons = 7,000,000 lbs * 128,700 batteries/2000 lbs.

Using similar logic and data from DOE/EPRI, Li-ion batteries would cost $11.9 trillion dollars, take up 345 square miles, and weigh 74 million tons. Lead–acid (advanced) would cost $8.3 trillion dollars, take up 217.5 square miles, and weigh 15.8 million tons.

Below is the paper, and here are two other news sources that covered the story:

Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report


Barnhart, Charles J. and Benson, Sally M. January 30, 2013. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environ. Sci., 2013, 6, 1083-1092.

Two prominent low-carbon energy resources, wind and sunlight, depend on weather. As the percentage of electricity supply from these sources increases, grid operators will need to employ strategies and technologies, including energy storage, to balance supply with demand.

We quantify energy and material resource requirements for currently available energy storage technologies: lithium ion (Li-ion), sodium sulfur (NaS) and lead-acid (PbA) batteries; vanadium redox (VRB) and zinc-bromine (ZnBr) flow batteries; and geologic pumped hydroelectric storage (PHS) and compressed air energy storage (CAES). By introducing new concepts, including energy stored on invested (ESOI), we map research avenues that could expedite the development and deployment of grid-scale energy storage. ESOI incorporates several storage attributes instead of isolated properties, like efficiency or energy density. Calculations indicate that electrochemical storage technologies will impinge on global energy supplies for scale up — PHS and CAES are less energy intensive by 100 fold. Using ESOI we show that an increase in electrochemical storage cycle life by tenfold would greatly relax energetic constraints for grid-storage and improve cost competitiveness. We find that annual material resource production places tight limits on Li-ion, VRB and PHS development and loose limits on NaS and CAES. This analysis indicates that energy storage could provide some grid flexibility but its build up will require decades. Reducing financial cost is not sufficient for creating a scalable energy storage infrastructure. Most importantly, for grid integrated storage, cycle life must be improved to improve the scalability of battery technologies. As a result of the constraints on energy storage described here, increasing grid flexibility as the penetration of renewable power generation increases will require employing several additional techniques including demand-side management, flexible generation from base-load facilities and natural gas firming.

Broader context

To increase energy security and reduce climate forcing emissions, societies seek to transition from fossil fuel based energy resources to renewable energy resources including wind and solar. However, an energy system based on renewable sources presents a host of challenges. Wind and solar resources vary with weather phenomena, yielding a variable and intermittent supply of energy. Electricity grid operators will need to employ several grid firming techniques including electrical energy storage. Building up energy storage for the power grid will require physical and financial resources. This study focuses on the energetic costs of storage. We calculate the energy and material demands on society required to build and maintain electrical energy storage capable of supplementing electricity generation mixes comprised primarily of wind and solar. We present a novel metric for comparing the energy performance of storage technologies: energy stored on energy invested (ESOI). This metric is especially useful because it combines several attributes of storage technologies that affect their energy costs, not just, for example, efficiency. Using ESOI, we map research and development avenues – primarily a 5 to 10 fold increase in cycle life – that will significantly reduce the energetic and material costs. Otherwise, the energetic cost of electrochemical storage technologies will preclude wide-scale adoption of grid-scale energy storage. Additionally, this work informs technology development and the planning of present and future energy systems.

1 Introduction

Stable operation of the electric grid requires that the power supply instantaneously matches the power demand. Grid operators continually balance the energy demands of consumers by dispatching available generation.1 This complicated task will become even more demanding in the future. Driven by the need to reduce the emission of CO2 and increase energy security, policy makers have implemented and continue to implement measures requiring greater power generation to shift to low-carbon energy resources.2,3 Wind and solar power show great potential as low carbon sources of electricity, but they depend on the weather. Grid operators cannot employ these resources at their discretion.

As the percentage of power generation by variable sources grows, flexibility in power grid operation will become increasingly necessary.4,5 Without increased flexibility variable resources will be underutilized and suffer from lower capacity factors — the financially critical ratio of actual energy provided to potential based on name plate capacity. Reduced capacity factors drive up the levelized cost of electricity. Curtailment of variable resources increases as their percentage of the grid’s power supply climbs from 20% to 30%.6 Beyond 30%, sharp reductions in capacity factors occur without increases in system flexibility.7

Future grid operators will achieve flexibility by employing techniques that modulate the balance of supply and demand. Proposed techniques include: real-time adjustments of customer electricity use through demand side management; installing generation overcapacity and transmission resources; or decoupling the instantaneous match of supply and demand with energy storage. Large-scale storage maximizes generation utilization without affecting when and how consumers use electrical power.

Storage is an attractive load-balancing technology for several reasons. It increases grid reliability and decreases carbon emissions by reducing transmission load and allowing spinning power plants to operate at optimum efficiencies.4 Storage could provide grid flexibility in locations that have ambitious climate-change policies and relatively low-carbon electricity sources including natural gas combined cycle, hydroelectric and nuclear.8 Finally, storage provides ancillary grid services including regulation, volt–ampere reactive (VAR) power and voltage support.9

The benefits of grid-scale energy storage are clear. The question then is cost. How much energy must society consume to build and maintain grid-scale storage? Will material availability limit deployment? What will the financial cost be? Today, financial cost obstructs storage adoption, yet valuable insights concerning application and optimal scheduling continue to make inroads.9,10 In this paper we focus on physical costs: energy and materials.

Our analysis is presented as follows. First we identify reasonable storage capacities appropriate for future grids with high percentages of renewable power generation. Secondly, we calculate the embodied energy required to maintain operational storage worldwide. Here, we present a novel metric for quantitatively assessing the energetic performance of storage technologies: energy stored on energy invested (ESOI). Thirdly, we apply the methods of Wadia et al.11 and calculate material dependencies for grid-scale energy storage. Finally, we discuss implications of these energetic and material constraints on storage deployment and recommend research and development directions that could relax these constraints.

This study builds on several foregoing studies that consider the material constraints of battery technologies. The electrification of vehicles has led to careful consideration of the materials needed to produce an adequate supply of vehicle batteries.12–14 Here we extend their material analysis to grid-scale storage by adding additional technologies. Our principle contribution is the quantification and discussion of the energetic costs of grid-scale energy storage in the context of providing grid flexibility for variable resources.

1.1 Electrical energy storage at global scale

Energy storage devices establish and maintain reversible chemical, pressure or gravitational potential differences between the storage medium and local environmental equilibrium. The design of an energy storage device is motivated by its application. Engineers place emphasis on different attributes – cost, efficiency, weight, capacity, etc. For grid-scale applications energy density is less important than cost, safety, efficiency and longevity.

The total energy capacity of storage needed to provide flexibility in the future is an active area of future energy system scenario research and ranges from no storage required to up to three days.15,16 We draw our estimates from several authoritative studies that explore future generation mix scenarios that include up to 50–80% renewable resources11,15,17,18 (see ESI for details). In the following analyses we use a narrower global storage capacity of 4 to 12 hours of world average power demand as a point of reference. This can be described as any equivalent time and power combination. For example, this is equivalent to the amount of energy needed to provide 1/2 of world electricity needs for 8 to 24 hours etc. It corresponds to an energy capacity of 8.4 to 25.3 TW h assuming present day average global power demand: 2.1 TW.19 For comparison, present day fossil fuel energy stores are over 15 times greater. We use this range to ask, ‘how much material and energy will be required to build storage for this range of estimates?’ Will these requirements preclude or present challenges for storage technologies? Are there attributes of storage technologies that R&D efforts should focus on to reduce energetic and material requirements?

For this analysis, we only included current representative electrical energy storage technologies with a developmental stage of pilot, commercial or mature, that show promise of economic viability within a ten-year time frame.9 We selected three batteries, two flow batteries, and two geological storage technologies for analysis: lithium-ion (Li-ion), sodium sulfur (NaS), and lead-acid (PbA); vanadium redox (VRB) and zinc-bromine (ZnBr); and compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). Several books and review papers describe these technologies at length.22–28

2 Calculations and results

2.1 Energetic requirements

Building storage devices requires energy for resource acquisition, transportation, fabrication, delivery, operation, maintenance and disposal. This requisite energy is its embodied energy. In this section we analyze the energy costs for storage technologies from three perspectives. The first compares initial energy costs of storage technologies. The second compares the energy costs for storage technologies over a 30 year period. The third presents a new metric, Energy Stored on Invested (ESOI), which has advantages over single parameter metrics, such as cost, efficiency or cycle-life.

We compare the energy costs of storage technologies by considering their cradle-to-gate embodied energy requirements. In a cradle-to-gate analysis, a specific Life Cycle Assessment (LCA) valuation, a technology’s use phase and disposal phase are omitted. We obtained these values for storage technologies from published LCA studies.13,29,30 A recent review of battery LCA by Argonne National Laboratory recognizes that battery LCA data often lack detailed energy and material flows in the best of cases.13 More commonly data is non-existent or decades out-of-date. We can, using these data, consider the implications of energy costs, obtain comparisons between technologies, and identify technology attributes that, if targeted by research, will lead to reductions in energy use in storage deployment. We converted values from study specific units to an embodied energy storage ratio, εgate — a dimensionless number that indicates the amount of embodied primary energy required for one electrical energy unit of storage capacity.

We obtained LCA data for technologies from three sources.13,29,30 Additional LCA data for materials were obtained from various reports and software databases.31–36 We truncate values to cradle-to-gate from studies that included cradle-to-grave analyses for consistency e.g. Denholm and Kulcinski, 2004.30 Values reported by Rydh and Sanden, 2005 (ref. 29) where in units of MJ primary fuel per kg of battery. These were converted from per kg to per MJ electricity capacity by assuming a practical energy density for electrochemical storage technologies (see Table 2).

Fig. 1A shows the cradle-to-gate embodied primary energy per unit of electrical energy capacity, εgate, in pink for grid-scale storage technologies. The embodied energy associated with materials and manufacturing are shown in blue and green boxes respectively. Median values for materials and manufacturing do not sum to median total εgate values because some studies only report total εgate and additional estimates for material embodied energy were obtained from LCA software databases and reports as described above. Electrochemical storage technologies require 3 to 7 times more energy per unit storage capacity than PHS and CAES. While it requires 694 units of energy to manufacture 1 unit of VRB storage capacity, it only takes 73 units for 1 unit of CAES capacity.

Fig. 1 Energy storage technologies require varying amounts of energy for manufacturing and for their production. (A) Cradle-to-gate primary embodied energy per unit of electrical energy storage capacity, ?gate, for storage technologies. (B) Levelized embodied energy required to build out grid-scale energy storage. Colored lines indicate the levelized embodied energy costs for storage technologies for a 30 years period as a function of capacity.

Fig. 1 Energy storage technologies require varying amounts of energy for manufacturing and for their production. (A) Cradle-to-gate primary embodied energy per unit of electrical energy storage capacity, ?gate, for storage technologies. (B) Levelized embodied energy required to build out grid-scale energy storage. Colored lines indicate the levelized embodied energy costs for storage technologies for a 30 years period as a function of capacity.

2.2 Levelized embodied energy

Selecting a storage technology based on static, up-front embodied energy costs alone is insufficient. Over time, cycle life (the number of times a technology can be charged and discharged) and efficiency greatly affect cumulative embodied energy requirements. Prior analysis led to two important findings: (a) technologies like PbA, whose energy requirements are dominated by production and transportation, are sensitive to cycle life and (b) technologies like Li-ion, NaS, VRB, ZnBr, PHS, CAES whose energy requirements are dominated by operation, are sensitive to round-trip efficiency.37 The energy cost will depend on the cycle life (λ) and round-trip efficiency (η) of storage technologies. The depth-of-discharge (D) modulates both cycle life and installation energy capacity size. A battery with a shallow D will require a larger installed capacity to provide a specified amount of energy storage. Table 1 shows attributes used for our analysis.

Table 1 Storage technology attributes affecting life-cycle energy requirements

  η  λ at depth-of-discharge (DOD)  
% 100% 80% 33% ε gate 
a Sources: ref. 23. b Sources: ref. 29. c Primary energy per unit electrical energy.
Li-ion 90 4000 6000 8500 454
NaS 75 2400 4750 7150 488
PbA 90 550 700 1550 321
VRB 75 2900 3500 7500 694
ZnBr 60 2000 2750 4500 504
CAES 70 >25000 DOD indep. 73
PHS 85 >25000 DOD indep. 101

A simple AC–AC round-trip η cannot be computed for CAES because it uses additional energy from natural gas used to heat the air as it leaves the storage cavity. By subtracting natural gas energy inputs and considering the differences in energy quality between natural gas and electricity, analysts report net electrical storage efficiencies between 66 and 71%.30,38 NaS and flow battery efficiencies are lower than other electrochemical technologies due to parasitic energy losses associated with thermal management and pumps.23

For nearly all electrochemical storage technologies, cycle life depends on the operating temperature and the depth of discharge. This is due to the kinetic behavior of chemical reactions. Rydh and Sanden 2005 (ref. 29) provides a table that shows cycle-life ranges for three different depths of discharge: 33%, 80% and 100%. Linden, 2010 (ref. 23) describes in detail the relationship between kinetics and cycle life for electrochemical storage technologies. Here, we assume the optimum operating temperature and select the depth of discharge and coupled cycle life that minimizes the levelized energy consumption (italic font in Table 1).

We calculate a levelized embodied energy for storage technologies as follows:

where tday is the number of days operating per year (365), and T is the levelization period in years. We assume EES technologies are replaced entirely and that recycling is not significant due to rapid deployment and scale up. Recycling would likely reduce the εgate preferentially for technologies with shorter cycle life, but this effect was not quantified here. PbA’s low εgate might be attributed to extensive present day recycling of automotive batteries.39 The normalization factor incorporating cycle life is rounded up to the next integer. Similar to levelized cost of electricity (LCOE) studies, we select a levelization period of 30 years.40

The solid lines in Fig. 1B, correspond to storage technologies and show the LEembodied (x-axis) required to build and maintain storage capacity (y-axis). The horizontal red lines indicate the world energy storage capacity reference of 4 to 12 hours of average power demand. Once a line has entered into the shaded regions the storage capacity as indicated by they-axis will require 1% and 3% of today’s global primary energy production to manufacture and maintain storage devices assuming a 30 years levelization period. Electrochemical storage technologies require 10 to 100 times more embodied energy for a given energy capacity than geological storage technologies.

2.3 Energy stored on invested

The levelized embodied energy calculation is useful for estimating the energy required to build grid-scale storage, but it suffers from biases introduced by assuming a levelization period and operational hours per year or a capacity factor. Motivated by energy returned on invested (EROI) analysis,41 we present a new formula that avoids these biases: energy stored on invested (ESOI). ESOI is the ratio of electrical energy stored over the lifetime of a storage device to the amount of primary embodied energy required to build the device:

where D, the depth-of-discharge, modulates the energy stored. Fig. 2 shows the ESOI for load-balancing storage technologies. It contrasts with the static cradle-to-gate energy costs shown in Fig. 1A. Over their entire life, electrochemical storage technologies only store 2–10 times the amount of energy that was required to build them.

Fig. 2 A bar plot showing ESOI, the ratio of total electrical energy stored over the life of a storage technology to its embodied primary energy. Higher values are less energy intensive.

Fig. 2 A bar plot showing ESOI, the ratio of total electrical energy stored over the life of a storage technology to its embodied primary energy. Higher values are less energy intensive.

2.4 Material resource requirements

In addition to energy costs, storage technologies require material resources. Several prior studies have estimated the material requirements for energy storage.12–14 The principal contribution of this study is quantifying the energetic requirements of energy storage. Materials are a second physical cost and we conducted our own analysis in order to discuss the implications these material requirements have on the time required to scale energy storage for load-balancing renewable resources in future energy systems.

Consider the elemental constituents of storage technologies. Fig. 3A–C show how global annual production, price and specific embodied energy vary with the mass fraction of elements in the Earth’s lithosphere.§ The top plot shows the total mass of elements produced annually worldwide in metric tonnes (1000 kg). The specific value is the 5 years annual average from 2006 to 2011.33 The colors of the plotted data correspond with the storage technology that each element supplies. The middle plot denotes price of elements in U.S. dollars per kg. The bottom plot shows the amount of embodied energy per kg of element acquisition is required using today’s extraction and purification techniques. The amount of energy required to extract and process a kg of material depends on its chemical form in the lithosphere. We obtained LCA data for elements from LCA studies, consultant firms and software packages: Li;31,32 Co;33 Na;34 S;35 Pb;31,34 V;32,36 Zn.31,34

Fig. 3 Energy storage technologies depend on the availability of critical materials and geologic resources. Lithospheric abundance of critical elements loosely correlates with resource production (A), price (B) and embodied energy (C). The blue lines represent a simple linear regression with grey envelopes outlining a confidence interval of 0.95

Fig. 3 Energy storage technologies depend on the availability of critical materials and geologic resources. Lithospheric abundance of critical elements loosely correlates with resource production (A), price (B) and embodied energy (C). The blue lines represent a simple linear regression with grey envelopes outlining a confidence interval of 0.95

The relative abundance of technology specific elements in the earth’s crust does not necessarily indicate their ability to be mined and produced, but it provides an initial assessment of material limits faced by certain technologies.42,43 For example, sulfur, the limiting electrochemical agent for NaS, is over 40 times more abundant than lead, the limiting agent for PbA. In general, annual production increases with lithospheric abundance and price decreases. Considering annual production alone, NaS manufacturing has advantages over VRB manufacturing due to an in-place production infrastructure that produces over 1000 times more requisite material.

2.5 Energy storage potential of resources

How much energy can a critical material or resource store? The energy storage potential (ESP) estimates the energy capacity of a storage technology’s critical resources.11,37 In this case, the ESP is limited by one of the two elements or molecules of the battery cell’s electrochemical couple: , where ρ is the theoretical energy density, M is mass of limiting material available, and mf is the mass fraction within the electrochemically active materials with corresponding ρTable 2 lists parameters used in ESP calculations. For ESP calculations, several assumptions and caveats were made:

Table 2 Electrochemical storage technology properties

Technology Reactants m f ρ theoretical (ρpractical)
a Sources: All information from ref. 23 unless otherwise noted.48
Li-ion (cylindrical spiral-bound) LixC6 Li 0.04 448 W h kg−1
Li1−xCoO2 Co 0.35 -200
NaS (NGK-Tepco) 2Na + xS Na 0.42 792
(x = 5 − 3) S 0.58 -170
PbA (prismatic) Pb + PbO2 Pb 0.93 252
H2SO4 -35
VRB V(SO4) V 0.31 167a
VO2(HSO4) (30a)
ZnBr Zn + Br2 Zn 0.29 436
Br 0.71 -70
  • We only considered materials that constitute the storage medium. There may be other resources, rare-earth elements for example, that play a key role in a storage technologies operation. The U.S. Department of Energy has identified elements critical for energy storage in “Critical Materials Strategy”.44This report indicates that some battery technologies, NiMH for example, use a cathode material designated as AB5, where A is typically rare earth mischmetal containing lanthanum, cerium, neodymium and praseodymium.44
  • The reserve base is an estimate based on measured or indicated amounts of minerals including minerals that are marginally economical and sub-economical to extract as defined by the USGS MCS report.33If a material is in low demand then reserve bases will likely be underestimates of resource availability.
  • The theoretical energy density is based on the active anode and cathode materials only. In practice, batteries only realize 25% to 35% of their theoretical energy density because of necessary inactive components.23Necessary components including electrolytes, containers, separators, current collectors and electrodes add mass and volume to the battery which reduces energy density.
  • CAES and PHS require cement and steel for construction; they are not materially limited. The embodied energy associated with acquiring steel will limit its acquisition well before limits in the physical material availability of iron and carbon in the lithosphere. However, they do require unique geological formations. A thorough estimate for national or worldwide PHS potential has yet to be made. The U.S. Energy Information Agency (EIA) and the U.S. Department of the Interior estimate remaining U.S. pumped hydro storage capacity at ten times present day levels.45,46These studies are conservative in that they do not consider coastal PHS. Considering these studies, we conservatively assume that the world has at least ten times present day pumped hydro capacity: 102 GW h × 10 = 1 TW h.
  • For CAES we estimate the ESP by considering locations identified for carbon dioxide sequestration and the energy density of compressed air: ESP = ρCAES× V, where Vis the reservoir volume. The volumetric energy density, ρCAES, of compressed air of atmospheric composition increases almost linearly with reservoir pressure.38 Existing CAES plants, for example Huntorf, have variable reservoir pressures of 60 bars and energy densities between 3 and 5 kW h m−3. We assume hydrostatic reservoirs in underground aquifers at depths greater than 500 m and an energy density ρCAES = 5 kW h m−3. The global volume estimates for CO2 sequestration for depleted oil and gas reservoirs and saline aquifers are 2 × 1012m3 and 7.9 × 1012 m3 respectively.47

Fig. 4 shows the ESP for grid-scale storage technologies. The shaded section on the left shows the ESP for EES limiting materials based on their annual production (colored bars). Using Pb as an example, if the entire annual production of lead was used to create PbA batteries, the total energy storage capacity would be 1.1 TW h or about 2% of the average world daily electricity demand. Sulfur, if used entirely for NaS manufacturing, would yield nearly 1000 times greater energy storage capacity. The main section of Fig. 4 shows ESP as a function of time (x-axis) assuming linear growth. This provides an estimate for the time required for a storage technology to reach an energy storage capacity goal of 4 to 12 hours (red horizontal lines). The shaded region on the right shows ESP as a function of economically viable reserve estimates or as a function of conducive geologic formations. Traditionalfossil fuel storage reserves are shown as reference (see footnote‡).

Fig. 4 shows the ESP for grid-scale storage technologies. The shaded section on the left shows the ESP for EES limiting materials based on their annual production (colored bars). Using Pb as an example, if the entire annual production of lead was used to create PbA batteries, the total energy storage capacity would be 1.1 TW h or about 2% of the average world daily electricity demand. Sulfur, if used entirely for NaS manufacturing, would yield nearly 1000 times greater energy storage capacity. The main section of Fig. 4 shows ESP as a function of time (x-axis) assuming linear growth. This provides an estimate for the time required for a storage technology to reach an energy storage capacity goal of 4 to 12 hours (red horizontal lines). The shaded region on the right shows ESP as a function of economically viable reserve estimates or as a function of conducive geologic formations. Traditionalfossil fuel storage reserves are shown as reference (see footnote‡).

Fig. 5 compares the embodied energy required to obtain a kg of various elements to the ESP of a kg of those elements. Assuming that the energy required to manufacture battery technologies are comparable, elements with a higher ESP/embodied ratio, like Na and Br, are less energy intensive.

Fig. 5 compares the embodied energy required to obtain a kg of various elements to the ESP of a kg of those elements. Assuming that the energy required to manufacture battery technologies are comparable, elements with a higher ESP/embodied ratio, like Na and Br, are less energy intensive.


Researchers have identified capital and levelized cost points that permit profitable avenues for storage.9,49,50 In response, industry and academia currently focus on developing inexpensive storage technologies. However, by asking the simple question, “Will energy and material costs limit the ability of storage to provide load-balancing for the electrical grid?”, we identify other critical criteria that must be addressed to achieve sufficient and rapid scale up of the storage industry. Storage adds infrastructure and necessarily increases material and energy demands. Society’s ability to accommodate these demands will dictate the maximum quantity and rate of storage deployment. Other energetic, material and land use constraints may limit renewable energy production technologies, precluding the need for massive grid-scale energy storage, and such studies are needed.

3.1 On energetic costs

Comparing εgate for storage technologies in Fig. 1A leads to two general conclusions. First, technologies that use readily available, inexpensive and abundant materials like air or waterrequire much less embodied energy than technologies that require rare elements mined from the earth. Second, older technologies like PbA contain less embodied energy associated with manufacturing than newer technologies like VRB because they benefit from progression and advancements in their production and manufacturing ‘learning-by-doing’ that also leads to reductions in financial costs.

Consider the levelized embodied energy costs over a 30 years time frame shown in Fig. 1B. PbA, the most demanding technology, requires over 1.5 years of worldwide primary energy demand to create 12 h of storage. Even if this demand was to be spread out over the next 30 years, the world would need to produce 5% more energy just to build PbA storage. This is doable, but would require sustained and cooperative efforts from government and industry. Less energy would be available for other uses. If we want to limit the amount of energy needed to build storage systems then we need to start building it now and continue for a long time. Alternatively, if we can rely on CAES and PHS, then energy requirements will not be a limitation and it could be built more quickly. Developing electrochemical technologies with comparable levelized embodied energy values to CAES and PHS would be immensely beneficial.

The most effective way a storage technology can become less energy intensive over time is to increase its cycle life. This suggests that the current R&D focus on reducing costs is not necessarily sufficient to create a scalable energy storage infrastructure. Instead, the focus needs to be on identifying energy storage options with much lower levelized energy costs – comparable to PHS and CAES. Granted, the accuracy of the LCA data could be greatly improved. Case studies for cycle life data, efficiency and depth-of-discharge should be sought to augment the highly generalized data presented here. The general implications would not change however. Unless cycle life is increased by a factor of 3 to 10 and embodied energy costs are reduced, the amount of storage required to provide load-balancing for significant fractions of renewable generation will tax societies’ energy systems.

The ESOI ratio compares the cumulative amount of energy stored to the embodied energy cost. Whereas CAES and PHS store >100 times more energy over its life than the energy required to build them, PbA’s low cycle life (300) leads to a poor ESOI ratio of 2. All of the electrochemical storage options have low ESOI ratios. CAES and PHS likely have higher ESOI values than those calculated here given our conservative cycle life estimate of 25,000. Ranked from least to most limited by energetic requirements, the technologies considered here are as follows: CAES, PHS, Li-ion, NaS, VRB, ZnBr, PbA.

A singular focus on improving storage efficiency misses the greatest opportunity for reducing the amount of energy required by storage technologies. We should not only consider the energy dissipated with every cycle due to inefficiencies, but the energy required, up-front, for manufacturing the technology. The total energy per unit capacity lost due to inefficiencies over the lifetime of a technology depends on the total number of cycles, λ, and the efficiency, ηεη = (1 − η)λ. For all electrochemical storage technologies, the up-front energy cost, εgate/D, dominates the energy budget (cf.Table 1). As a superior metric, ESOI includes all of these terms in a meaningful and intuitive way that quantitatively assesses the energy performance of storage technologies.

3.2 On material resource costs

Developing storage technologies that use Earth-abundant materials with high annual production rates like Na, S and Zn is not only practical, but the production infrastructure is already in place. All electrochemical storage technologies considered here besides NaS will require a significant portion of their active resources’ annual production. For example, one can estimate from Fig. 4 that about 3 days of Na production yields the ESP equivalent of 1 year of Pb production and 10 years of Co production. If battery manufacturing rates were to increase rapidly over the next half century, demand for these materials would increase greatly. Likely, this would encourage mining industry R&D and resource exploration efforts, increasing the amount of economically viable reserves.51 The challenge will be in the extraction of storage critical resources. For an individual technology to reach 12 hours of capacity, annual production by mass will need to double for lead, triple for lithium, and increase by a factor of 10 or more for cobalt and vanadium. This will drive up the price of these commodities.

Geologic storage, in particular CAES, faces negligible material limits. The challenge for geologic energy storage is finding suitable sites that accommodate not only technical requirements, but environmental considerations as well. Ranked from least to most limited by material availability, the technologies considered here are as follows: CAES, NaS, ZnBr, PbA, PHS, Li-ion, VRB.

3.3 Proposed technology targets

Although our results identify major challenges for EES at grid-scale, they, more importantly, indicate research directions that will loosen storage material and energy constraints. The ESOI of storage technologies depends linearly on their efficiency, depth-of-discharge, embodied energy and cycle-life (eqn (2)). Consider the current range and theoretical limits on these parameters. Fig. 6 shows how ESOI varies with efficiency, cycle life and embodied energy. With this framework efficiency and depth-of-discharge can be increased at most by about 25–33% or a factor of 1/4 to 1/3. What about εgate? Using current and developing new low-energy extraction techniques and reducing energy costs in manufacturing through efficiencies gained by learning, we anticipate that embodied energy costs could be reduced at most by a factor of 2 to 3.

Fig. 6 Two contour plots show how ESOI depends on cycle life (x-axis), efficiency (y-axis of upper plot) and embodied energy (y-axis of lower plot).

Fig. 6 Two contour plots show how ESOI depends on cycle life (x-axis), efficiency (y-axis of upper plot) and embodied energy (y-axis of lower plot).

The third parameter in eqn (2), cycle life, has a range for current technologies from <1000 to >25,000, a factor of 25. Clearly then, the greatest potential for increasing the ESOI for storage technologies lies with a R&D focus on extending cycle life. Ongoing research may push cycle life for some technologies including lead-acid beyond 40,000.52 The lower plot of Fig. 6 implies that at high cycle life values >15,000, reductions in εgate provide the greatest increase in ESOI. PHS has very high cycle life and low εgate. Limited by geologic setting, further PHS development would benefit from research into plant component resistance to harsh salt water environments. This would permit robust, long-lasting PHS at coastal locations.

Much energy storage research currently focuses on high specific energy density (W h kg−1).53,54 This quality is very important for electric vehicles and portable electronics. Cycle life is less of a concern in these applications because batteries in portable electronics and vehicles lack market drivers to outlive these goods. For grid scale applications, energy density is not limiting (see ESI, spatial footprint). Based on ESOI calculations, EES research should focus on making robust and long-lived storage devices, extending cycle life. The less frequently a storage technology needs to be decommissioned, recycled and built anew, the less energy and material resources will be required to maintain capacity.

3.4 Concluding remarks

Although many potential short- and long-term energy resources are available to society, the greatest endowments of renewable low-carbon electricity are wind and solar. However, they require load-balancing techniques to mitigate their intermittent and variable nature. Electrical energy storage will allow the use of electricity in renewable-sourced grids with the same demand-centric perspective that is provided today from fossil fuel-sourced grids. The energy capacity required is likely between 4 and 12 hours of average power demand. To build an energy storage infrastructure of this size will require materials and energy at amounts comparable to annual global production values. Unless the cycle life of electrochemical storage technologies is improved, their energy costs will prohibit their deployment. CAES and NaS show the greatest potential for grid storage at global scale. Unless the cycle life of electrochemical storage technologies is improved, their energy costs will prohibit their deployment as a load-balancing solution at global scale.

EES will not play a singular role in providing flexibility for power grids supplied by renewable resources. Given the high energy costs and necessary increases in material production introduced by storage, grid-operators should employ other techniques in concert. Integrating storage technologies, demand-side management including smart-grid applications, and most likely natural gas firming generation resources should prove to be a challenging yet rewarding goal that will ultimately greatly reduce carbon emissions and increase grid reliability and security.


This work was conducted by Stanford University’s Global Climate and Energy Project (GCEP). We greatly appreciate the support GCEP’s sponsors provided (

Related Articles


  1. (CAISO) California Independent Service Operator, ‘Integration of Renewable Resources: Operational Requirements and Generation Fleet Capability at 20% RPS’, California ISO, 2010.
  2. F. Pavley and F. Nunez, California Assembly Bill No. 32-Global Warming Solutions Act of 2006, 2006, Search PubMed .
  3. CARPS, California Codes: Public Utilities Code. Section 399.11–399.31. California Renewables Portfolio Standard Program, 2009,, accessed 27 May 2012 Search PubMed .
  4. P. Denholm and R. M. Margolis, Energy Policy, 2007, 35, 4424–4433 CrossRef .
  5. P. Denholm, E. Ela, B. Kirby and M. Milligan, NREL Technical Report, 2010, NREL/TP-6A, p. 61 Search PubMed .
  6. D. Corbus, D. Lew, G. Jordan, W. Winters, F. Van Hull, J. Manobianco and B. Zavadil, IEEE Power Energ. Mag., 2009, 7, 36–46 Search PubMed .
  7. P. Denholm and R. M. Margolis, Energy Policy, 2007, 35, 2852–2861 CrossRef .
  8. (CCST) California Concil on Science and Technology, California’s Energy Future – The View to 2050, Summary Report, California council on science and technology technical report, 2011 Search PubMed .
  9. D. Rastler, Electricity Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits, Electric power research institute technical report, 2010 Search PubMed .
  10. E. Barbour, I. a. G. Wilson, I. G. Bryden, P. G. McGregor, P. a. Mulheran and P. J. Hall, Energy Environ. Sci., 2012, 5, 5425 Search PubMed .
  11. C. Wadia, P. Albertus and V. Srinivasan, J. Power Sources, 2011, 196, 1593–1598 CrossRef CAS .
  12. B. A. A. Andersson and I. RÃde, Transport Res. Transport Environ., 2001, 6, 297–324 CrossRef .
  13. J. L. Sullivan and L. Gaines, A Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs ANL/ESD/10-7, Argonne national laboratory technical report, 2010 Search PubMed .
  14. M. F. Ashby and J. Polyblank, Granta Teaching Resources, 2012, 2, 38 Search PubMed .
  15. C. Augustine, R. Bain, J. Chapman, P. Denholm, E. Drury, D. Hall, E. Lantz, R. Margolis, R. Thresher, D. Sandor, N. Bishop, S. Brown, G. Cada, F. Felker, S. Fernandez, A. Goodrich, G. Hagerman, S. Heath, G. ONeil and K. Paquette, ‘Renewable Electricity Futures Study: Volume 2 Renewable Electricity Generation and Storage Technologies’, NREL TP-6A20-52409-2, 2012, vol. 2.
  16. D. MacKay, Sustainable Energy – Without the Hot Air, UIT Cambridge Limited, Cambridge, illustrate edn, 2009, vol. 78, p. 384 Search PubMed .
  17. P. Denholm and M. Hand, Energy Policy, 2011, 39, 1817–1830 CrossRef .
  18. M. Hand, S. Baldwin, E. DeMeo, J. Reilly, T. Mai, D. Arent, G. Porro, M. Meshek and D. Sandor, ‘Renewable Electricity Futures Study’, NREL TP-6A20-52409, 2012.
  19. IEA, Key World Energy Statistics, International energy agency technical report, 2010 Search PubMed .
  20. USDOE, Strategic Petroleum Reserve Annual Report for Calendar Year 2010 DOE/FE – 0545, United States Department of Energy Technical Report, November, 2011 Search PubMed .
  21. EIA, Underground Natural Gas Storage Capacity, Form EIA-191M and Form EIA-191A, U.S. energy information administration technical report, 2012 Search PubMed .
  22. S. M. Schoenung, Characteristics and Technologies for Long- vs. Short-Term Energy Storage. A Study by the DOE Energy Storage Systems Program SAND2001-0765, Sandia National Laboratories, U.S. Dept. of Energy Technical Report, March, 2001 Search PubMed .
  23. T. Reddy and D. Linden, Linden’s Handbook of Batteries, McGraw-Hill Prof Med/Tech, 4th edn, 2010, p. 1200 Search PubMed .
  24. R. A. Huggins, Energy Storage, Springer, New York, 1st edn, 2010, p. 400 Search PubMed .
  25. F. S. Barnes and J. G. Levine, Large Energy Storage Systems Handbook, CRC Press, Boca Raton, FL, 1st edn, 2011, p. 244 Search PubMed .
  26. Y.-F. Y. Yao and J. T. Kummer, J. Inorg. Nucl. Chem., 1967, 29, 2453–2475 CrossRef CAS .
  27. R. H. Radzilowski, Y. F. Yao and J. T. Kummer, J. Appl. Phys., 1969, 40, 4716 CrossRef CAS .
  28. S. Succar, Large Energy Storage Systems Handbook, CRC Press, Boca Raton, FL, 2011, ch. 5, pp. 111–153 Search PubMed .
  29. C. Rydh and B. Sandén, Energy Convers. Manage., 2005, 46, 1957–1979 CrossRef CAS .
  30. P. Denholm and Kulcinski, Energy Convers. Manage., 2004, 45, 2153–2172 CrossRef CAS .
  31. P. G. Hammond and C. Jones, Proc. Instn Civil. Engrs: Energy, 2008, 161, 4434–4443 Search PubMed .
  32. ESU-services, Abstract of LCIs, 2010, Search PubMed .
  33. USGS, Mineral Commodity Summaries, U.S. geological survey technical report, 2011 Search PubMed .
  34. Gabi, Gabi Software, Gabi 5, PE International, 2012 Search PubMed .
  35. R. T. Struck, M. D. Kulik and E. Gorin, Consolidation Coal Company, 1969 Search PubMed .
  36. P. Merier and G. Kulcinski, Life-Cycle Energy Cost and Greenhouse Gas Emissions for Gas Turbine Power, Fusion Technology Institute, University of Wisconsin-Madison Technical Report, December, 2000 Search PubMed .
  37. C. J. Rydh and B. a. Sandén, Energy Convers. Manage., 2005, 46, 1980–2000 CrossRef CAS .
  38. S. Succar and R. Williams, Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power Acknowledgments, Princeton Environmental Institute, Energy Systems Analysis Group Technical Report, April, 2008 Search PubMed .
  39. D. R. Wilburn and D. A. Buckingham, U.S. Geological Survey Scientific Investigations Report, 2006, p. 9 Search PubMed .
  40. G. M. Masters, Renewable and efficient electric power systems, John Wiley & Sons, Hobokon, NJ, illustrate edn, 2004, p. 654 Search PubMed .
  41. C. A. S. Hall, C. J. Cleveland and R. K. Kaufmann, Energy and Resource Quality: The Ecology of the Economic Process, Wiley Interscience, 1986, p. 602 Search PubMed .
  42. P. C. K. Vesborg and T. F. Jaramillo, RSC Adv., 2012, 15 Search PubMed .
  43. W. M. Brown, The Meaning of Scarcity in the 21st Century: Drivers and Constraints to the Supply of Minerals Using Regional, National and Global Perspectives Volume IV Sociocultural and Institutional Drivers and Constraints to Mineral Supply, U.S. geological survey open-file report 02–333 technical report, 2002 Search PubMed .
  44. D. Bauer, D. Diamond, J. Li, D. Sandalow, P. Telleen and B. Wanner, U.S. Department of Energy Critical Materials Strategy, U.S. Dept. of Energy Technical Report, December, 2010 Search PubMed .
  45. OECD/IEA, Renewable Energy Essentials: Hydropower, International Energy Agency Technical Report Figure 2, 2010 Search PubMed .
  46. USBR, Hydropower Resource Assessment at Existing Reclamation Facilities, United States Department of the Interior, Bureau of Reclamation, Power Resources Office Technical Report, March, 2011 Search PubMed .
  47. S. Benson, P. Cook, J. Anderson, S. Bachu, H. Nimir, B. Basu, J. Bradshaw, G. Deguchi, J. Gale, G. Goerne, W. Heidug, S. Holloway, R. Kamal, D. Keith, P. Lloyd, P. Rocha, B. Senior, J. Thomson, T. Torp, T. Wildenborg, M. Wilson, F. Zarlenga, D. Zhou, M. Celia, B. Gunter, J. King, E. Lindegerg, S. Lombardi, C. Oldenburg, K. Pruess, A. Rigg, S. Stevens, E. Wilson and S. Whittaker, IPCC Special Report on Carbon Dioxide Capture and Storage, Intergovernmental Panel on Climate Change, Cambridge, U.K., 2005, ch. 5 Search PubMed .
  48. I. Scott and S.-H. Lee, Large Energy Storage Systems Handbook, CRC Press, Boca Raton, FL, 2011, ch. 6, pp. 153–181 Search PubMed .
  49. M. Kintner-Meyer, P. Balducci, C. Jin, T. Nguyen, M. Elizondo, V. Viswanathan, X. Guo and F. Tuffner, Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP), Pacific Northwest National Laboratory (PNNL), Battelle, United States Department of Energy Technical Report, April, 2010 Search PubMed .
  50. J. Eyer and G. Corey, Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. A Study for the DOE Energy Storage Systems Program, February, 2010 Search PubMed .
  51. M. W. Hitzman, 2002, 24, 63–68.
  52. C. D. Wessells, R. a. Huggins and Y. Cui, Nat. Commun., 2011, 2, 550 CrossRef .
  53. M. Armand and J.-M. Tarascon, Nature, 2008, 451, 652–657 CrossRef CAS .
  54. J. Goodenough and M. Buchanan, Basic research needs for electrical energy storage, U.S. Department of Energy, Office of basic energy science technical report, 2007 Search PubMed .
† Electronic supplementary information (ESI) available: Storage capacity estimates, spatial footprint calculations and results. See DOI: 10.1039/c3ee24040a
‡ Strategic Petroleum Reserve: Large fossil fuel energy stores include the U.S. strategic petroleum reserve (SPR) and the North American underground natural gas storage network. The SPR stores 695.9 million bbl of oil (390 TW he) as of April 20, 2012 for emergency use.20 Underground natural gas storage is used to meet seasonal demand variations in natural gas use. Storage capacity of U.S. working gas (the total stored gas minus the cushion gas required to maintain pressure) has varied between 1600 and 3800 billion cf. (426 TW he) between 2006 and 2011.21 To convert these fossil fuel stores of energy to W he, we assumed that a bbl of oil and a cf. of gas contains 5.78 × 106 and 1055 BTU of energy respectively. We assume a conservative conversion efficiency from thermal energy (BTU) to electrical energy (kW h) of 33%.
§ Lithospheric abundance data obtained viaref. 42. Geochemistry and fossil fuel consumption segregate Co, S and V as outliers. Cobalt naturally exists in mineral compounds usually extracted as co-products of nickel and copper mining.33 Isolating pure cobalt from various mineral ores is an expensive process. Today sulfur is obtained as an undesired by-product of oil and gas refining. Currently, sulfur is in oversupply which leads to stockpiling and a suppressed market price.33 The available supply of vanadium is uncertain because, presently, vanadium is primarily recovered as a by-product or co-product of mining and coal, crude oil, and tar sand refining.33 Vanadium is a unique case: it is obtained as a waste material from smelters and oil refineries. LCA analysis for vanadium varies significantly from 43 MJ to 3711 MJ per kg depending on whether vanadium is consider a primary product or a by-product.32,36
Posted in Alternative Energy, Batteries, Battery - Utility Scale, CAES Compressed Air, Elements: Critical, Mining, Pumped Hydro Storage (PHS) | Tagged , , , , , | 18 Comments

Lifespan of infrastructure, transportation, and buildings

Preface. What follows is from the International Energy Agency 2020 report “Energy technology perspectives” on how to transition to net zero emissions by 2050. This might require the replacement of just about everything, since power plants, steel blast furnaces, cement kilns, buildings, trucks, cars, buses and more that run fossil fuels now would have to be replaced or greatly modified to run on hydrogen, electricity, or other renewables since most of this infrastructure will last for decades, and much of it is quite young, especially in China.

Since mining uses 10% of all energy, and many elements are likely to run out or are controlled by China, and energy transitions take 50 years or more (Smil 2010 Energy myths and realities), making such a transition is unlikely. And if conventional oil did start declining in 2018, impossible.

Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Collapse Chronicles, Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

* * *

Figure 1.12 Typical lifetimes for key energy sector assets

Notes: The red markers show expectations of average lifetimes while the blue bars show typical ranges of actual operation in years, irrespective of the need for interim retrofits, component replacement and refurbishments. “Buildings” refers to building structures, not the energy consuming equipment housed within. Examples of “urban infrastructure” assets include pavement, bridges and sewer systems.

The operating lifetime of some assets, especially those that produce materials or transform energy, can span several decades: this means that it could be a long time until they are replaced by cleaner and more efficient ones.

Figure 1.13 Age structure of existing fossil power capacity by region and technology in operation 2018 (source: Platts 2020a)

About 50% of the installed fossil-fired power generation capacity in China was built within the last ten years, and 85% within the last 20 years. The average age of coal plants is over 40 years in the United States and around 35 years in Europe, while it is below 20 years in most Asian countries, and just 13 years in China. Gas-fired power plants are generally younger: they are on average less than 20 years old in all major countries with the exception of Russia, Japan and United States, reflecting the fact that gas was only introduced as a fuel for power generation in many countries from the 1990s. Gas plants however have a shorter technical lifetime than coal plants. Of the 2 100 GW of coal-fired capacity in operation worldwide today and the 167 GW under construction, around 1 440 GW could still be operating in 2050 – 900 GW of it in China. Of the 1 800 GW of gas power plants in operation today and 110 GW under construction, only 350 GW are likely to still be operational in 2050.

Figure 1.14 Age profile of global production capacity for key industrial subsectors

Notes: CSAM = Central and South America. HVC = high-value chemicals. Average ages are calculated by region or country, depending on data availability, for 2019. Steel data are calculated based on plant-level data, while cement, ammonia, methanol and HVC calculations are based on historic data on capacity additions at the national level. Sources: Informed by capacity and production data from Steel Institute (2018), Wood Mackenzie (2018), IFA (2020), Platts (2020b), and USGS (2020).

In heavy industry sectors, China again takes centre stage (Figure 1.14). It accounts for nearly 60% of global capacity used to make iron from iron ore – the most energyintensive step in primary steel production. It also accounts for just over half the world’s kiln capacity in cement production and for around 30% of total production capacity for ammonia, methanol and high-value chemicals (HVCs) combined in the chemicals sub-sector. The majority of this capacity is at the younger end of the age range in each asset class, averaging between 10 and 15 years, compared with a typical lifetime of 30 years for chemical plants and 40 years for steel and cement plants. The range of ages of individual plants within the country varies considerably, but the output growth over the last 20 years in China’s steel (more than seven-fold) and cement (nearly fourfold) sub-sectors shows the relatively short time frame over which most of these installations have been added.

Our estimates for the steel industry’s key assets (blast furnaces and direct reduced iron [DRI] furnaces) incorporate plant-level information on the years when plants were most recently refurbished. Taking this information into account implies that European blast furnaces are among the most recently renewed plants on average (a theme discussed in Chapter 7).

The chemical sub-sector has a more even distribution of capacity both regionally and in terms of age than cement and steel industries. Several chemical facilities have been built in recent years in advanced economies such as the United States as well as in the Middle East. Most of the investment in methanol and HVC capacity has taken place in regions with access to low cost petrochemical feedstocks, particularly North America, Middle East and China. The shale revolution has made US ethane (a compound present in natural gas and a key petrochemical feedstock) comparable in price to ethane in the Middle East, leading to a re-balancing in the geographical spread of chemical production capacity. Methanol and HVC plants are on average around ten years old. Ammonia output growth has been slower than that of HVCs and methanol, with emerging economies generally adding these facilities early in their development, in step with agricultural development. Ammonia plants are on average 15 years old, and around 16 years old in China.

Figure 1.15 Building stock by year of construction and share of stock that remains in 2050

Note: Building floor area covers residential, commercial, services, education, health, hospitality, public and other non-residential sectors but excludes industrial premises. Sources: Informed by NRCan (2020), RECS (2020), CBECS (2020), and EU Commission (2020), NBS China (2020).

The energy conversion devices that lead to direct emissions in the buildings sector (e.g. natural gas combustion for space and water heating) have a short lifetime compared with power plants and industrial assets: they tend to last for around 15 years. However, the buildings in which they are housed will shape energy consumption and subsequent emissions from the sector for decades. The average age of the buildings stock is between 12 and 15 years for most emerging economies and 30 to 40 years for advanced economies. About half of today’s buildings stock is likely to be in use in 2050 (Figure 1.15). The average lifetime of a building varies from 30-50 years for commercial buildings to 70-100 years for modern residential construction and 150 years or more for historic buildings, although low-quality construction can reduce the lifetime of residential buildings to 30 years or less, especially in rapidly emerging economies (IEA, 2019g).

Around half of today’s buildings stock is likely still to be in use in 2050.

The age of a building tends to make a big difference to its heating and cooling needs. Buildings constructed before 1960 for example, can require three-times (or more) as much heat as those built in accordance with current building codes. Building energy codes increase efficiency and reduce energy needs, with the energy requirements of new buildings reducing by around 20% since 2000 globally and by more than 30% in the United States and the European Union8 (IEA, 2019h). However, the long life of buildings and a relatively small number of renovations means that overall progress is slow: around 60% of the global building stock in use today was erected when there were no code requirements regarding energy performance, and this rises to 85% or more in most emerging economies.

Figure 1.16 Age profile and geographic distribution of road transport vehicles

The global vehicle fleet is generally young, with about 70% of cars, trucks and buses being less than ten years old (Figure 1.16). The global passenger car fleet in 2019 reached about 1 billion vehicles. As cars age, many get exported from advanced economies to emerging economies where they may be driven for many more years. The lifetime of cars, trucks and buses is roughly comparable, but trucks in particular are used very intensively by their first owner over a period of three to five years, and as a result they are typically used infrequently for low-intensity operations by the time they reach a decade or more of age.

The past decade has seen a dramatic shift the location of where new cars are sold, with China surpassing the European and North American market in the early 2010s. Emerging economies have gone from accounting for less than 25% of new car sales in 2005 to making up about half of global sales today (IEA, 2019f). The result is that the car fleet in emerging economies is newer than in advanced ones. Around 85% of the cars on China’s roads are less than a decade old; in Europe, Japan and North America, cars manufactured within the past ten years make up only about 70% of the fleet. The same general pattern is seen with trucks and buses, but the shifts in new sales of each of these modes are even starker: the majority of trucks sold in the past decade are in emerging economies, as are two-thirds of the buses. With recent declines in car sales in China and India, global car sales may peak in the coming few years.

Figure 1.17 Age profile and geographic distribution of aircraft

While about 70% of the global aircraft fleet operating in 2019 was built after 2000, aircraft may continue to operate for 50 years or more (Figure 1.17). The median age of the fleet is around 15 years. Newer aircraft predominantly are providing additional capacity to service rapidly growing demand in Asian Pacific commercial passenger aviation markets. Aircraft operating in Europe are roughly of median age on average, while aircraft servicing the North American market tend toward the older end of the distribution range.

Posted in Airplanes, Automobiles, Concrete, Dams, Electricity, Energy, Limits To Growth, Manufacturing & Industrial Heat, Oil & Gas, Transportation, Trucks | Tagged , , , , , | 5 Comments