Summary of The New York Times article below: There are too many commercial and government players. with too many conflicting interests, plus regulatory hurdles, as well as too much money required to maintain, improve, or expand the grid.
What this means: There’s no point to building more wind, nuclear, solar etc., because without a grid strong and large enough to contain the increased amount of generated electricity, the unstable electrical load will crash the grid and create blackouts. The grid needs to be enormous and national in scale to balance the electrical load because fluctuations in wind and other intermittent resources can bring the grid down. Currently the absolute maximum of wind power the grid could sustain now is about 30%, and every time you add wind power, you need to add more natural gas peaker power plants to quickly fire up when the wind dies down, which increases our reliance on natural gas, a finite resource.
Matthew L. Wald. July 12, 2013.Ideas to Bolster Power Grid Run Up Against the System’s Many Owners. New York Times
Bill Richardson often denigrated America’s power transmission network as a “third-world grid” when he was President Bill Clinton’s energy secretary, but the more current description of it is “balkanized,” with 500 separate owners.
Marc L. Spitzer, a former member of the Federal Energy Regulatory Commission, said even that analogy was not harsh enough.
“To call the U.S. grid balkanized would insult the Macedonians,” he said.
When President Obama presented his plans last month for executive action that would cut emissions of greenhouse gases, one item on his list was strengthening the power grid. It was on the lists of President George W. Bush and Mr. Clinton, too. But for the most part, experts say the grid is not being changed, at least not on a scale big enough to make much difference.
Their view is reflected in what they say is a largely hypothetical three-year effort by hundreds of engineers to redraw the grid for the eastern two-thirds of the United States. Engineers in the project, which is now drawing to a close, have proposed a basic redesign for beefing up the Eastern Interconnection, the part of the grid that stretches from Nova Scotia to New Orleans.
The redesign would reduce carbon dioxide emissions by replacing coal with wind energy and give the United States something it has never had, a grid designed for shipping bulk amounts of electricity across the continent. The planning, which cost $16 million, shows a substantial carbon emissions reduction.
But the project is covered with footnotes that assert that it does not represent the position of the participants.
“Our work goes into the general knowledge base of the kind of answers you would get when you ask certain policy questions,” said David Whiteley, the executive director of the Eastern Interconnection Planning Collaborative, which carried out the study. Christopher Russo, an energy consultant at Charles River Associates, which helped with the redesign, called it “a technical road map” of thousands of miles of high-capacity transmission lines, and calculations of electricity supply and load and the paths between them.
“We said, ‘Here’s what we could do,’ ” he said. “We haven’t said how we would pay for it.”
Still, drawing a sketch is a step forward. The grid is divided into regions that cover a state or a compact area (like New England) or slightly larger units, like PJM, which once stood for Pennsylvania-Jersey-Maryland but now extends through West Virginia, Ohio and the Chicago area. Almost all planning is done within those regions, as if they were islands. Federal officials say there is not even a regulatory mechanism for planning a line that does more than connect two regions.
“Given the history of this particular industry and its complexity, it is just not going to happen, at least not any time soon,” said James J. Hoecker, a former member of the Federal Energy Regulatory Commission, which has some jurisdiction over transmission lines. One problem, he said, is “resource nationalism,” in which individual states want to use local resources, whether they are coal or yet-to-be-built offshore wind, rather than importing from neighbors in a way that could be more economical.
For now, engineers in the grid redesign project have determined that conducting business as usual between 2010 and 2030 would require $18.5 billion in new transmission lines in the United States, while a system designed to integrate renewables like wind energy on a large scale would cost $115.2 billion. In some places, however, renewables could cut electricity costs by allowing the replacement of high-cost generators with lower-cost ones.
The technology, the engineering skill and even the money are all available, experts say, but the ability to reach agreement on such a grid is not. Dozens of experts said in interviews that there were simply too many players, both commercial and governmental, and too many conflicting interests.
Some of the players have a stake in cleaner or cheaper electricity, but others do not. “There are participants who have a vested interest in the high price of electricity, not the low price of electricity,” said Douglas Gotham, an industry analyst at Purdue University.
At the Illinois Citizens Utility Board, a state-chartered organization that represents consumer interests in regulatory proceedings, David Kolata, the executive director, said new lines could lower costs for customers. But, he said, “for every winner, you get just as many losers, perhaps even more losers.”
The hurdles are particularly acute with wind. Electricity can be made from natural gas almost anywhere, because a superb gas network, built under federal regulation over the last 60 years, will move the gas to wherever it is most convenient to burn it. Energy from coal can also be made almost anywhere. But to make electricity from wind, the generator has to be where the resource is, and for wind, that means places with few major power lines.
In Kansas, for example, sites are available where the wind is so strong that over the course of a year, a wind machine will produce half of its theoretical maximum capacity — an excellent output. But wind machines are more common in eastern locations where energy production is only one-third of the theoretical maximum.
“You could expect 40 or 50 percent more energy” with wind machines in western Kansas, said Michael Skelly, the president of Clean Line Energy Partners, a company that is trying to build, piecemeal, elements of the current plan. The company is planning four large projects but faces significant regulatory hurdles.
The existing grid also makes it difficult to predict the energy output from wind projects. At a single wind farm, energy production can range from zero to 100 percent. But with hundreds of wind farms networked together, production would almost never be zero. Utility planners could in fact derive a minimum likely capacity, an important statistic as more resources are poured into building wind farms.
However, wind energy works only if it is widely shared. Already, there are times in the Pacific Northwest and the Midwest when wind production exceeds demand in the regions to which it can be easily sent. Electricity is a supply chain with a time lag even shorter than the one for sushi. If the power cannot be sent somewhere instantly, it is useless.
For now, there is simply no momentum for a transmission system that would connect the best sites for renewable energy with the biggest areas of demand. “There’s no overall transmission planning for the entire interconnection,” said Vladimir S. Koritarov, deputy director of the Center for Energy, Environmental and Economic Systems Analysis at Argonne National Laboratory.
There is some hope for individual projects, although experts say they are the equivalent of building Interstate highways one route at a time.