Steam powered farm tractors

Preface. Steam engines weren’t very efficient, 10 to 20% at best, which is why they went away beginning around 1920 when oil-powered engines came along.  At the very best steam engines for transportation reached 10 to 20% efficiency. They were almost universally powered by coal, mostly by locomotives and stationary engines in factories. Only in America for a few decades was there so much wood that steam boats and locomotives burned wood rather than coal, until deforestation east of the Mississippi forced coal to be used, and a few decades later around 1920 oil combustion engines became more powerful, efficient, far less dangerous, and cheaper and the steam engines that remain are steam turbines used to generate electricity, not to move vehicles.

Steam turbines to generate electricity are very efficient — the best can be 45%.  But since trucks run on diesel fuel and can’t be electrified with batteries or catenary, and biomass doesn’t scale up enough to produce electricity, I am mainly interested in steam engines burning biomass as a long-term replacement for diesel-engines for trucks in the future.

Biomass won’t scale up for vehicle and factory steam engines in the future for the same reason it didn’t in the past, the wood will run out quickly. Forests can take decades to grow back, since photosynthesis is inefficient, with about  a half percent of new biomass added per year.

Further limiting biomass steam engines is that post carbon they will depend on horses, like they did in the past, to haul biomass fuel and water to the steam engine. Each horse needs an average of 5 acres to provide its food, land which is now used to produce human food.

Meanwhile, post fossil fuels, wood will also be needed for nearly everything – heating and cooking, homes and buildings, furniture and flooring, tools, roofs, and so on. It will be needed to make charcoal to make iron, bricks, metals, ceramics, and so on.

In fact, biomass depletion (especially deforestation) is one of the main reasons past civilizations have failed for the past 5,000 years (see one of my favorite books: John Perlin’s “A forest journey”.  And not just because there isn’t enough biomass.  When you cut down forests, topsoil blows and washes away, and agricultural production declines. War ships can no longer be built to trade or steal trees elsewhere.

Steam-powered vehicles are so inefficient I wasn’t going to ever cover them.  But after several interviews about my book “When Trucks Stop Running”, several readers commented that we’ll use steam engines in the future.  I agree.  Until the forests are depleted, civilization crashes again, the forests grow back, and steam engines are made again, for a while.

Which reminded me of that one reason why the energy crisis isn’t feared by anyone is that it’s like Bop-a-mole.  Even if you succeed in convincing someone that solar PV power won’t be able to replace oil because it has a low EROI (too low to replace itself let alone provide power for everything else), is too seasonal, requires too much non-existent energy storage, and so on, most people will reason: but there’s still wind power, hydrogen, geothermal, wave and tidal, hydropower, natural gas and so on.  Given the reduction of news and conversation to ten-second soundbites, the pressure to be optimistic about everything all the time (the scientists will come up with something!), and lack of scientific  education, I don’t expect to ever make a dent in the general ignorance on energy and natural resource matters, but I don’t mind. This site is meant for the very small percent of people who, like me, want to understand reality regardless of how depressing it may be.  An even smaller subset of them will actually make different choices about career and where to live than they might have otherwise, choices that may save their lives in the bottleneck ahead. Good luck to anyone who has read this far!

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

Brandon Knapp. 2000. How Steam Power Revolutionized the Farm in America. Yesterday’s Tractors.

As the American farm entered the 1800s, its main source of power came from three animals-the horse, the mule, or the ox. The average farm worked by horses was 100 acres, and a farmer walked 8 miles per acre to plow his fields (with a walking plow) at the average speed of 1 1/2 mph. With 100 acres, the farmer walked 800 miles to plow his fields. And he still had to plant the crop, and cultivate! For wheat and other crops the grain had to be separated from the chaff with a machine called the thresher. The thresher was powered by a power sweep, which was turned by horses. Everything depended on the strength and durability of humans and horses.

In 1849, things began to change. Some of the first portable steam engines for farm use were built in this year, in Philadelphia. They only provided belt power for machines like the thresher. There were three sizes-4, 10, and 30 horsepower. The 4-hp model sold for $625 and the 30-hp model sold for $2300. That was a lot of money back then! These machines were also heavy; the 4-hp model weighed two tons, or 1000 pounds per horsepower!

These machines were pulled from field to field by horses. The steam engine provided steady power, it didn’t tire after hard work, and it only was “fed” when it worked; instead of all year round, like animals. Yet these machines were still crude, and a low steam pressure of 50 to 90 p.s.i. limited the amount of work that could be done.

Over the next few years, the steam pressure would be steadily increased with better quality material and construction of the boilers. However the greatest change of the steam engine would make it unforgettable for the next 150 years-“Self Propelled” steam engines began their debut in 1855. At first they were just a normal “Portable” engine, with chains or gears connecting the crankshaft and the rear wheels. They couldn’t even steer! They still needed horses to turn. But the self-propelled engine could also pull its thresher behind it.

If a steam engine could pull a thresher, it could also pull another type of load-the plow. In 1855, a “steam plow” was used by its inventor Obed Hussey. In 1858, Joseph Fawkes used his 30-hp engine; named “Lancaster”, for a plowing demonstration at the Illinois State Fair. The engine and plow were then taken to the U.S. Agricultural Society’s contest in Chicago where it won the championship. The steam engine that could be used for plowing, pulling, belt work, or other uses became known as the Steam Traction Engine.

Then, development of the steam engine slowed as the Civil War began. Most industry was used to produce weapons of war. However, the Armies required more food, and the Armies took many men from their farms at the same time. The few men and women left on the farms needed to use technology to keep up with demand. So the small number of steam engines (mostly portable types) became more popular. Yet the war kept farmers from getting the technology they wanted. It would have to wait until after the war…

After the war, steam engines steadily improved in technology and quality. Many different types and manufacturers of engines sprung up. Case, one of the largest manufacturers of steam engines, made its first engine in 1876. Port Huron began in 1882. In 1880, a patent was issued for a steering devise; the steam engine could make itself turn! Then came the invention of the clutch (very high technology!). Steam pressures of 150 p.s.i. became commonplace. Work was easier for the farmer as the steam engine pulled the plow, and turned the belt to thresh the grain.

The steam traction engine’s popularity soared during the 1890s. But, so did the horse’s. Just as the Eli Whitney’s cotton gin needed more slaves; the steam engine required more horses. The steam traction engine could plow, haul huge loads, and power the threshing machine all day. It needed plenty of fuel and water, which was brought by horses. The increased amount of tilled land needed to be planted, and cultivated, which the steam engine was too big to do. Although the steam engine made horses unneeded for some big jobs, more horses were needed for many others.

Groups of farmers formed “threshing rings” in order to pay for the costs of an engine and thresher. It was very expensive; a 110 hp engine from Case could cost over $3000! The farmers began to realize that the steam engine, while useful, still didn’t keep expenses down enough (when you add horses to the bill) to make them useful to the small farmer. Only larger farms could afford them. As the “newfangled” gasoline engines became more reliable, and smaller, they began to cut into the steam engine’s market. From 1900 and on the steam engine became less popular. In 1924 came the Farmall, a gas tractor that could do all the jobs on the farm. It was the final nail in the coffin. Steam production stopped a few years later. A few steam engines worked ’till World War Two. Then many were lost in the scrap drives. Not too many are around today, and you can only see them at antique tractor shows. Yet, when they are there, you notice them. Just look for the plumes of coal/wood smoke, and listen for the whistles. They still are impressive!

Interesting Information

President Abraham Lincoln said in 1859-“The successful application of steampower to farm work is a desideratum-especially a steam plow. To be successful, it must, all things considered, plow better than can be done by animal power. It must do all the work as well, and cheaper, or more rapidly, so as to get through more perfectly in season; or in some way afford an advantage over plowing with animals, else it is no success.”

Horsepower in steam engines was first measured with the formula, 1hp for every 10-14 square feet of boiler surface. But this formula was outdated by the increase of steam pressures in the engines, yet the formula was used until 1911. Then a new measurement-brake horsepower (which was measured on a Prony Brake-type dynamometer). An engine from 1908, which was advertised as 30hp, might be advertised as a 100hp engine in 1912! Some ads had both types of horsepower rating, such as 30-100hp.

Steam engines exploded every day in the U.S. in the early 1900s. For a plain steam traction engine-the boiler holds 52 cubic feet of water, and 26 cubic feet of steam at 150 psi. That 26 cubic feet of steam at 150 psi weighs 9.73 lbs, but holds 1,300,000 foot pounds of energy. The 52 cubic feet of water is at 366° F. It holds 38,000,000 foot pounds of energy. When the boiler fails, it releases enough energy (from the steam and water) to send a one-pound object straight up 7,500 miles (into orbit). Or a 7,500 pound object (the traction engine) one mile up!

Some reader comments:

  • The early farms were not 100 acres in size, most of them were much closer to 40 acres, and probably less than 20 acres was actually plowed under, so the theory of a farmer walking 800 miles just to get the plowing done is a bit far-fetched. A farm of 100 acres would have been quite an operation and would have required several hired men.
  • This was a good report but the dates are misleading. plowing with traction engines did not start until about 1876 when case introduced the first traction engine.

References

Ertel, Patrick W. American Steam Tractors.  1997.

Halberstadt, Hans. Steam Tractors. 1996. Iron Will. Reiman Publications, L.P., 1997.

Letourneau, Peter. Vintage Case Tractors. 1997.

Macmillan, Don., and Jones, Russell. John Deere Tractors and Equipment, Volume One 1837-1959. American Society of Agricultural Engineers, 1988.

Moorhouse, Robert. The Illustrated History of Tractors. Quintet Publishing Limited, 1996.

Norbeck, Jack. Encyclopedia of American Steam Traction Engines. Crestline Publishing Co., 1976.

Posted in Biomass-powered Steam Engines | Tagged , , , , | 7 Comments

Permafrost will limit natural gas, oil, and coal extraction

Preface. For many people, it’s comforting to know that about 25% of remaining oil and gas reserves (we have the know-how and economics to get it) and resources (beyond our technical and monetary capability) are in the arctic. They assume we’ll get this oil and gas when we need to, and delay oil shortages for a decade or more.

But  they haven’t considered the difficulties of trying to drill for oil and gas or mine coal in permafrost.  It buckles roads, airports, buildings, pipelines, and any other structures placed on top.

A Greenpeace report published in 2009 said thawing soil in Russia’s permafrost zones caused buildings, bridges and pipelines to deform and collapse, costing up to 1.3 billion euros (nearly $1.5 billion) a year in repairs in western Siberia.

Although there are ways to build roads that can withstand melting and freezing permafrost for a while, it is terribly expensive, and it is why we haven’t developed much oil or natural gas in Alaska besides Prudhoe Bay, as far north as you can get, with fewer permafrost issues.

The cost and energy of production in permafrost may mean that reserves are much less than estimated.  Especially if they are developed when oil production begins to decline, since the price and declining availability of oil will mean there’s less energy to build roads, towns, platforms for drilling rigs and oil pipelines. And for agriculture, transportation supply chains, and all the other myriad ways oil and gas keep us alive.

As it is, climate change continues to exceed past engineering standards, and every year Alaska and Canada spend millions of dollars trying to fix roads, bridges, and other infrastructure.

 Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

* * *

Lee, J. 2019. Why Vladimir Putin Suddenly Believes in Global Warming. Russia was happy that global warming opened up Arctic oil, but the melting of permafrost poses a huge threat to its hydrocarbon heartlands. Bloomberg.

Until now, climate change has been seen as a “good thing” for Russia — at least in part. Warming waters have opened up the Northern Sea Route across the top of the country and made it practical, if not necessarily economic, to search for and exploit oil and gas resources beneath the Arctic seas. Who remembers the Shtokman gas project?

Yet the warming that is opening up the Arctic seas may be starting to have a less beneficial effect on the frozen landmass of northern Russia, the heartland of the country’s oil and gas development and production.

Areas of discontinuous permafrost could see a 50-75% drop in load bearing capacity by 2015-25 compared with 1965-75 [my comment: which can damage or destroy existing pipelines and other infrastructure].

“Permafrost is undergoing rapid change,” says the Ocean and Cryosphere in a Changing Climate report adopted by the IPCC last week. The changes threaten the “structural stability and functional capacities” of oil industry infrastructure, the authors warn. The greatest risks occur in areas with high ground-ice content and frost-susceptible sediments. Russia’s Yamal Peninsula — home to two of Russia’s biggest new gas projects (Bovanenkovo and Yamal LNG) and the Novy Port oil development — fits that bill.

The problem is bigger than those three projects, though. Some “45% of the oil and natural gas production fields in the Russian Arctic are located in the highest hazard zone,” according to the IPCC report.

The top few meters of the permafrost, the so-called active layer, freezes and thaws as the seasons change, becoming unstable during warmer months. Developers account for this by making sure their foundations are deep enough to support their infrastructure: including roads, railways, houses, processing plants and pipelines. But climate change is causing that active layer to deepen, which means the ground loses its ability to support the things built upon it. The loss of bearing capacity is dramatic and it’s already well under way.

Foundations in the permafrost regions can no longer bear the loads they did as recently as the 1980s, according to a 2017 report by the Arctic Council’s Arctic Monitoring and Assessment Program. At Noviy Port the bearing capacity of foundations declined more than 20% between the 1980s and the first decade of this century.

On the Yamal Peninsula the ground’s bearing capacity is forecast to fall by 25%-50% on average in the 2015-2025 period, when compared with the years 1965-1975. Further south, in an area that includes Urengoy (the world’s second-largest natural gas field) and much of Russia’s older West Siberian gas production, the soil could lose 50-75% of its bearing capacity, according to AMAP.

While the impact of retreating permafrost on Russia’s new Arctic oil and gas developments can be mitigated, it adds to the price of the projects in an already high-cost environment. For older infrastructure the problems are worse. Gas production at the Bovanenkovo field on the Yamal Peninsula is expected to reach 140 billion cubic meters a year — more than Norway’s entire production — but it “has seen a recent increase in landslides related to thawing permafrost,” says the AMAP.

Greg Quinn. August 2, 2016. Climate Change Is Hell on Alaska’s Formerly Frozen Highways A critical artery is threatened by thawing permafrost. Bloomberg.

For seven decades, the Alaska Highway has mesmerized adventure-seeking travelers. In one breathtaking stretch through the Yukon, glacier lakes and rivers snake through aspen forests and rugged mountains that climb into the clouds.

In recent years, though, a new sight has been drawing motorists’ attention, too, one they can spot just a few feet from their cars’ tires. Bumps and cracks have scarred huge swathes of the road, with some fissures so deep a grown man can jump in and walk through them. Scientists say they’re the crystal-clear manifestation that permafrost — slabs of ice and sediment just beneath the Earth’s surface in colder climes — is thawing as global temperatures keep rising.

In some parts of the 1,387-mile (2,232 kilometer) highway, the shifting is so pronounced, it has buckled parts of the asphalt. Caution flags warn drivers to slow down, while engineers are hard at work concocting seemingly improbable solutions: inserting plastic cooling tubes or insulation sheets, using lighter-colored asphalt or adding layers of soccer-ball sized rocks — fixes that are financially and logistically daunting.

“It’s the single biggest geotechnical problem we have,” said Jeff Currey, materials engineer for the northern region of Alaska’s Department of Transportation. “The Romans built roads 2,000 years ago that people are still using. On the other hand, we have built roads that within a year or two, without any maintenance, look like a roller coaster because they are built over thaw-unstable permafrost.

At the time of its construction, the highway was a show of American ingenuity and determination during World War II. In March 1942, just months after the Japanese bombed Pearl Harbor, the U.S. Army hastily began to build a road linking Alaska, another exposed Pacific outpost, through Canada to the lower 48 states. Seven months later it was opened, providing a key supply line in case of invasion.

Today the highway serves as the main artery connecting the “Last Frontier” with Canada and the northwestern U.S., bringing tourists to Alaska cruise ships; food, supplies and medicine to remote towns; and equipment to oil fields and mines that are the region’s lifeblood.

Judy Gagnon, a 67-year-old trucker, has driven Canada’s roads since the early 1970s and said she’s seeing “more pieces fall apart.” Some damage is regular wear and tear, but “they are having trouble maintaining the road bed, because you have the permafrost underneath, and then you have it melting and it’s sinking.

The highway’s dark surface absorbs sunlight while the shoulders trap water and snow that act like a warm blanket. The heat breaks down the permafrost (soil, rock or sediment frozen for at least two consecutive years). Annual repair costs for one section that runs through the Yukon are $22,900 per kilometer, seven times the average, according to a territorial government report.

Thawing also threatens airport runways, buildings, animal-migration patterns and energy pipelines. It’s a problem outside North America, too. More than 600 scientists from nations including the U.S., Canada, Russia, China, Sweden and Argentina, attended an international permafrost conference in June.

The Alaska Highway challenged its original builders seven decades ago by swallowing up trucks. Any digging caused some terrain to thaw unless extra layers of logs and gravel were installed on top to ensure that “the frost was permanently locked in,” according to a 1944 U.S. War Department film.

Today’s engineers don’t assume permafrost will remain stable, even with modern insulation. Some roads being built now may become lost causes, requiring new bridges or detours, if global warming exceeds estimates in upgraded building standards.

“There are so few roads, and there is no redundancy, so every road is critical,” Currey said. “A detour is possible, but the detour might be 700 miles.

Forty-three percent of a 124-mile stretch between Alaska and Whitehorse, the Yukon capital, is “highly vulnerable to permafrost thaw,” according to a report co-authored by Fabrice Calmels, a researcher at Yukon College.

“It’s like taking five stories out of a 10-story building,” he said in an interview.

One solution is to keep heat away by building thicker embankments with larger gravel and rocks that help circulate cooler air, or by adding layers of insulation such as foam. More expensive options include installing pipes to vent out warmth. Some vents, called thermosyphons, are tubes, often filled with liquid carbon dioxide, that use a cycle of evaporation and condensation to take advantage of cooler air temperatures. These work if the difference above and below ground is at least 1 degree Celsius.

The key is creating infrastructure that’s “resilient” to future changes, said Paul Murchison, director of transportation engineering at the Yukon Department of Highways and Public Works.

Mark Carney, governor of the Bank of England, and Canada’s Environment and Climate Change Minister Catherine McKenna stressed the urgency of the problem at a July 15 discussion on global warming. McKenna gave a grim update on Carney’s birthplace in the Northwest Territories, just east of the Yukon.

“Communities are unable to reach each other, it’s harder to get goods there,” she told attendees in Toronto. Thawing permafrost isn’t “just an inconvenience, folks; it’s a change in the way of life.”

Posted in Arctic, EROEI remaining oil too low, How Much Left, Peak Natural Gas, Peak Oil, Reserves Lower than stated, Roads, Transportation | Tagged , , , , | Leave a comment

Charcoal for the high heat needed in manufacturing after peak oil

Preface. De Decker (2011) writes:

A large share of energy consumed worldwide is by heat. Cooking, space heating and water heating dominate domestic energy consumption. In the UK, these activities account for 85% of domestic energy use, in Europe for 89% and in the USA for 61%. Heat also dominates industrial energy consumption. In the UK, 76% of industrial energy consumption is heat. In Europe, this is 67%. Few things can be manufactured without heat.

Although it is perfectly possible to convert electricity into heat, as in electric heaters or electric cookers, it is very inefficient to do so. It is often assumed that our energy problems are solved when renewables reach ‘grid parity’ – the point at which they can generate electricity for the same price as fossil fuels. But to truly compete with fossil fuels, renewables must also reach ‘thermal parity‘.  It still remains significantly cheaper to produce heat with oil, gas or coal than with a wind turbine or a solar panel.

In today’s solar thermal plants, solar energy is converted into steam (via a steam boiler), which is then converted into electricity (via a steam turbine that drives an electric generator). This process is just as inefficient as converting electricity into heat: two-thirds of energy gets lost when converted from steam to electricity. 

If we were to use solar thermal plants to generate heat instead of converting this heat into electricity, the technology could deliver energy 3 times cheaper than it does today.”

The following industries need heat of up 1800 to 3275 F: Chemicals, Forest products, Iron and Steel, Plastics & Rubber, Fabricated metals, Transport Equipment, Computers, electronics & equipment, Aluminum, Cement, Glass, Machinery, Foundries. For nearly all of these products, there is no alternative electric process

The only industries that can get by without high heat are the food, beverage and textile industries.

The problem with using concentrated solar power is that these power plants cost a billion dollars each, often generate very little power, are dependent on fossil fuels for every step of their life cycle, and it is inconceivable that all manufacturing in the northern latitudes would be relocated next to the most powerful solar collectors in southern deserts.

So that leaves charcoal. According to wiki “Charcoal briquettes can burn up to approximately 1,260 °C (2,300 °F) with a forced air blower forge.”

But oh dear, at what a cost to the planet. In the past, the massive production of charcoal, employing hundreds of thousands of workers was a major cause of deforestation

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

Muhumuza, R. 2019. Africa’s charcoal trade is decimating region’s fragile forest cover. Associated Press.

The machete-wielding men lodge themselves deep inside forests for weeks at a time, felling trees that will be incinerated into pieces of charcoal. Because they often work at night and target seemingly idle public land, they operate with relative impunity while decimating forests in parts of Africa.

Fires in Brazil’s Amazon rainforest have underscored the challenges of conserving the Earth’s forest cover, a substantial amount of which is found in Africa. After the Amazon, the Congo basin tropical rainforest — covering territory the size of Western Europe — is the world’s second largest, often referred to as the Earth’s second lung.

The world’s poorest continent, home to over 1.2 billion people, has long struggled to protect its forests amid a population explosion that fuels demand for plant-based energy sources seen by many as cheap, especially charcoal.

Some 25% to 35% of climate-changing greenhouse gas emissions come from so-called biomass burning, which also includes seasonal fires intentionally set to clear land for agriculture, according to the European Space Agency. The majority of those fires occur in tropical regions of Africa.

Reliance on charcoal or firewood is highest in Africa and Asia, according to a 2018 report by the U.N. Food and Agriculture Organization, with some African cities almost entirely dependent on charcoal for cooking. In Kinshasa, the capital of Congo, 90% of residents rely mainly on it, the report said.

In Somalia, ravaged by extremist violence, the cutting of trees to sustain an illicit charcoal trade is so widespread that the U.N. has warned that desertification there threatens stability.

The value of the charcoal export trade from the Horn of Africa nation to the Middle East and elsewhere — though banned — is estimated at over $360 million per year. Some 8.2 million trees were felled for charcoal between 2011 and 2017, according to U.N. figures.

In Uganda, an East African nation whose lush vegetation once inspired Winston Churchill to call it “the pearl of Africa,” authorities have long warned about the unsustainable nature of the charcoal trade, which persists despite the extension of the power grid deep into the country. Hydroelectric power remains too expensive for many people even in the capital, Kampala, as middle-class families run charcoal stoves to keep electricity bills down.

Edwin Muhumuza, an environmental protection activist who runs the Kampala-based civic group Youth Go Green, said demand for charcoal has turned it into a precious commodity much like gold or coffee.

“We are really concerned,” he said. “What annoys is they cut down the trees but they don’t replace them.”

Now the National Environment Management Authority, a government agency, is urging authorities to remove consumption taxes on liquid petroleum gas, an alternative source of cooking energy, to save forests from the charcoal business.

Figures show a dire situation. Uganda’s forest cover as a percentage of total land stood at 9% in 2015, down from 24% in 1990, according to government data.

But authorities in northern districts such as Gulu, which provides much of the charcoal entering Kampala, are fighting back in a campaign that has yielded scores of impounded charcoal trucks since 2015.

Gulu chairman Martin Mapenduzi organizes raids in hopes of arresting charcoal burners.

“Illegal logging has gone down but the destruction of forests for charcoal burning is still high,” Mapenduzi said. “It’s something that is giving us a lot of headache, but we are fighting.”

The price of a bag of charcoal, which can sustain a small family for several weeks, has been rising steadily in Kampala, reaching about $28 in August largely because of reduced supply from places such as Gulu. A whole bag is unaffordable for many who instead buy it daily in smaller quantities.

The expense is still far too much for families, said Rose Twine, an entrepreneur who sells her version of an eco-stove while warning against what she calls the unsustainable reliance on charcoal.

References.

De Decker, K. 2011. The bright future of solar thermal powered factories. Low Tech magazine.

Posted in Industrial Heat, Peak Biofuels, Wood | Tagged , , , | 3 Comments

Why self-driving cars may not be in your future

Preface. Below are excerpts from several articles about why a completely automated vehicle is unlikely.  Heaven forbid they are invented. Researchers have found that people will drive 76% more miles, stop using bicycles and mass transit, waste a considerable amount of energy, and increase congestion.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

Quain, J. R. September 26, 2019. Autonomous Cars are still learning to see. New York Times.

Consensus is growing among designers that self-driving cars just aren’t perceptive enough to make them sufficiently safe.

The problem is that cars can’t begin to figure out what’s around them — separating toddlers from traffic cones, for example — if they can’t see the objects in the first place.  Autonomous cars still can’t see well enough to safely maneuver in heavy traffic or see far enough ahead to handle highway conditions in any kind of weather.

Until now, the standard model for autonomous cars has used some combination of four kinds of sensors — video cameras, radar, ultrasonic sensors and lidar. It’s the approach used by all the leading developers in driverless tech, from Aptiv to Waymo. However, as dozens of companies run trials in states like California, deployment dates have drifted, and it has become increasingly obvious that the standard model may not be enough.

Video cameras can be foiled by glare. Standard radar can judge the relative speed of objects but has Mr. Magoo-like vision. Ultrasonic sensors can sense only nearby objects — and not very clearly. Lidar (formally, light detection and ranging), while able to create 3-D images of people and street signs, has distance limitations and can be stymied in heavy rain. And even the most sophisticated artificial intelligence software can’t help if it doesn’t have the perceptual data to begin with.

My comment: according to the article, other sensing technologies are being developed, but read the articles below before thinking this is an easy technical problem to solve soon.  Just be glad that some of this technology is making conventional cars safer to drive.

Mervis, J. December 15, 2017. Not so fast. We can’t even agree on what autonomous, much less how they will affect our lives. Science.

Human drivers aren’t as unsafe as they’re made out to be.  A fatal crash now occurs once every 3.3 million hours of vehicle travel. It will be hard for an automated system to beat that. The public will be much less accepting of crashes caused by software glitches or malfunctioning hardware rather than human error. “Society now tolerates a significant amount of human error on our roads,” Pratt told a congressional panel earlier this year. “We are, after all, only human.”

While developers amass data on the sensors and algorithms that allow cars to drive themselves, research on the social, economic, and environmental effects of Automated Vehicles (AVs) is sparse. Truly autonomous driving is still decades away according to most transportation experts.

In the dystopian view, driverless cars add to many of the world’s woes. Freed from driving, people rely more heavily on cars—increasing congestion, energy consumption, and pollution. A more productive commute induces people to move farther from their jobs, exacerbating urban sprawl. At the same time, unexpected software glitches lead to repeated recalls, triggering massive travel disruptions. Wealthier consumers buy their own AVs, eschewing fleet vehicles that come with annoying fellow commuters, dirty back seats, and logistical hassles. A new metric of inequality emerges as the world is divided into AV haves and have-nots.

Companies have good reason for painting the rosiest scenario for their technology, Shladover, a transportation engineer at the California Partners for Advanced Transportation Technology program in Richmond says. “Nobody wants to appear to be lagging behind the technology of a competitor because it could hurt sales, their ability to recruit top talent, or even affect their stock price,” he says.

As a result, it’s easy for the public to overestimate the capabilities of existing technology. In a fatal crash involving a Tesla Model S and a semitrailer in May 2016, the driver was using what Tesla describes as the car’s “autopilot” features—essentially an advanced cruise control system that can adjust the car’s speed to sync with other vehicles and keep the car within its lane. That fits the definition of a level-two vehicle, which means the driver is still in charge. But he wasn’t able to react in time when the car failed to detect the semi.

Shladover believes AV companies need to be much clearer about the “operational design” of their vehicles—in other words, the specific set of conditions under which the cars can function without a driver’s assistance. “But most of the time they won’t say, or they don’t even know themselves,” he says.

But progress will likely be anything but steady. Level three, for example, signifies that the car can drive itself under some conditions and will notify drivers when a potential problem arises in enough time, say 15 seconds, to allow the human to regain control. But many engineers believe that such a smooth hand-off is all but impossible because of myriad real-life scenarios, and because humans aren’t very good at refocusing quickly once their minds are elsewhere. So many companies say they plan to skip level three and go directly to level four—vehicles that operate without any human intervention.

Even a level-four car, however, will operate autonomously only under certain conditions, say in good weather during the day, or on a road with controlled access.

Rural communities might need government subsidies to give residents of a sparsely populated area the same access to AVs that their urban neighbors enjoy. And advocates for mass transit, bicycling, and carpooling are likely to demand that AV fleets enhance, rather than compete against, these sustainable forms of transportation.

Pavlus, John. July 18, 2016. What NASA Could Teach Tesla about Autopilot’s Limits. Scientific American.

Decades of research have warned about the human attention span in automated cockpits

After the Tesla’s Model S in auto-pilot mode crashed into a truck and killed its driver, the safety of self-driving cars has been questioned due to 3 factors: the autopilot system didn’t see the truck coming, the driver didn’t notice the truck either, so neither applied the brakes.

Who better knows the dangers than NASA, where automation in cockpits has been studied for decades (i.e. cars, space shuttle, airplane).  They describe how connected a person is to a decision-making process as “in the loop”, which, say driving a car yourself, means Observe, Orient, Decide, Act (OODA).  But if your car is in autopilot but you can still interact with the system to brake or whatever, you are “ON the loop”.

Airplanes fly automated, with pilots observing.  But this is very different from a car.  If something goes wrong the pilot has many minutes to react. The plane is 8 miles in  the air.

But in a car, you have just ONE SECOND.  That requires a faster reflex reaction time than a test pilot. There’s almost no margin for error.  This means you might as well be driving manually since you still have to be paying full attention when the car is on autopilot, not sitting in the back seat reading a book.

Tesla tries to get around this by having the autopilot make sure the driver’s hands are on the wheel and visual and audible alerts are triggered if not.

But NASA has found this doesn’t work because the better the auto-pilot is, the less attention the driver pays to what’s going on.  It is tiring, and boring, to monitor a process that does well for a long time, and was called a “vigilance decrement” as far back as 1948. Experiments back then showed that after just 15 minutes vigilance drops off.

So the better the system the more we’re likely to stop paying attention.  But no one would want to buy a self-driving car that they may as well be driving. The whole point is that dangerous stuff we’re already doing now like changing the radio, eating, and talking on the phone would be less dangerous in autopilot mode.

These findings expose a contradiction in systems like Tesla’s Autopilot. The better they work, the more they may encourage us to zone out—but in order to ensure their safe operation they require continuous attention. Even if Joshua Brown was not watching Harry Potter behind the wheel, his own psychology may still have conspired against him.

Tesla’s plan assumes that automation advances will eventually get around this problem.

Transportation experts have set up 6 levels of automation.

What the car does at each of the 6 levels:

  • 0: nothing
  • 1: accelerates, brakes, OR steers
  • 2: accelerates, brakes, AND steers
  • 3: assumes full control within narrow parameters, such as when driving on the freeway, but not during merges or exit.
  • 4: Everything, only under certain conditions (e.g. specific locations, speed, weather, time of day)
  • 5: everything: goes everywhere, any time, and under all conditions

What the driver does:

  • 0: Everything
  • 1: Everything but with some assistance
  • 2: remains in control, monitors and reacts to conditions
  • 3: must be capable of regaining control within 10-15 seconds
  • 4: Nothing under certain conditions, but everything at other times
  • 5: Nothing, and unable to assume control

Our take on the prospects:

  • 0: older fleet
  • 1: present fleet
  • 2: Now in testing
  • 3: might never be devloped
  • 4: where the industry wants to be
  • 5: Never

Computers do not deal well with anything unexpected, with sudden and unforeseen events.   Self-driving cars can obey the rules of the road, but they cannot anticipate how other car drivers will behave. Without super-accurate GPS automation relies on seeing lines on the pavement to keep in their lane, but snow, rain, and fog can make them go away. Self-driving cars rely on special detailed maps of the location of intersections, on-ramps, stop signs and so on. very few roads are mapped to this degree, or updated with construction, detours, conversions to roundabouts, new stop lights, and so on.  They don’t detect potholes, puddles, or oil spots well and can be confounded by the shadows of overpasses.  If a collision is unavoidable, do you run over the child or swerve into a light pole and kill the driver potentially? (Boudette 2016).

John Markoff. January 17, 2016. For Now, Self-Driving Cars Still Need Humans. New York Times.

Self-driving cars will require human supervision. On many occasions, the cars will tell their human drivers, “Here, you take the wheel,” when they encounter complex driving situations or emergencies.  In the automotive industry, this is referred to as the hand-off problem, and automotive engineers say there is no easy solution to make a driver who may be distracted by texting, reading email or watching a movie perk up and retake control of the car in the fraction of a second that is required in an emergency. The danger is that by inducing human drivers to pay even less attention to driving, the safety technology may be creating new hazards. The ability to know if the driver is ready, and if you’re giving them enough notice to hand off, is a really tricky question.

The Tesla performed well in freeway driving, but on city streets and country roads, Autopilot performance could be described as hair-raising. The car, which uses only a camera to track the roadway by identifying lane markers, did not follow the curves smoothly or slow down when approaching turns.  On a 220-mile drive to Lake Tahoe from Palo Alto, Calif., Dr. Thrun said he had to intervene more than a dozen times.

Like the Tesla, the new autonomous Nissan models will require human oversight and even their most advanced models aren’t autonomous in  snow, heavy rain and some nighttime driving.

You could propose various fixes, but none of them get around the 1 second time for the driver to react. That is not fixable.

Massachusetts Institute of Technology, CSAIL. 2018. Self-driving cars for country roads: Most autonomous vehicles require intricate hand-labeled maps, but new system enables navigation with just GPS and sensors. ScienceDaily.

Uber’s recent self-driving car fatality underscores the fact that the technology is still not ready for widespread adoption. One reason is that there aren’t many places where self-driving cars can actually drive. Companies like Google only test their fleets in major cities where they’ve spent countless hours meticulously labeling the exact 3D positions of lanes, curbs, off-ramps and stop signs.

Indeed, if you live along the millions of miles of U.S. roads that are unpaved, unlit or unreliably marked, you’re out of luck. Such streets are often much more complicated to map, and get a lot less traffic, so companies are unlikely to develop 3D maps for them anytime soon. From California’s Mojave Desert to Vermont’s White Mountains, there are huge swaths of America that self-driving cars simply aren’t ready for.

Additional references

Boudette, N. June 4, 2016. 5 Things That Give Self-Driving Cars Headaches. New York Times.

Really great short story about self driving cars: T. C. Boyle. 2019. Asleep at the Wheel. New Yorker.

Posted in Automobiles | Tagged , , , , , | 1 Comment

Foreign Policy: The limits of clean energy

Preface. This article appeared in the magazine Foreign Policy. Some of the points made are:

  • Renewables to power the world would require 34 million metric tons of copper, 40 million tons of lead, 50 million tons of zinc, 162 million tons of aluminum, and no less than 4.8 billion tons of iron.
  • The batteries for power storage when the sun isn’t shining and the wind isn’t blowing will require 40 million tons of lithium requiring a 2,700 percent increase over current levels of extraction. Lithium is an ecological disaster. It takes 500,000 gallons of water to produce one ton of lithium. Most lithium is in dry areas, and mining companies are using up the groundwater, leaving nothing for farmers to irrigate their crops with, while chemical leaks from lithium mines have poisoned thousands of miles of rivers, killing entire freshwater ecosystems.
  • We’ll also need to replace 2 billion vehicles with electric vehicles, leading to even more mind-boggling amounts of materials.
  • Ecologists estimate that even at present rates of global material use, we are overshooting sustainable levels by 82 percent.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

Hickel, J. 2019. The limits of clean energy. If the world isn’t careful, renewable energy could become as destructive as fossil fuels. Foreign policy.

The conversation about climate change has been blazing ahead in recent months. Propelled by the school climate strikes and social movements like Extinction Rebellion, a number of governments have declared a climate emergency, and progressive political parties are making plans—at last—for a rapid transition to clean energy under the banner of the Green New Deal.

This is a welcome shift, and we need more of it. But a new problem is beginning to emerge that warrants our attention. Some proponents of the Green New Deal seem to believe that it will pave the way to a utopia of “green growth.” Once we trade dirty fossil fuels for clean energy, there’s no reason we can’t keep expanding the economy forever.

This narrative may seem reasonable enough at first glance, but there are good reasons to think twice about it. One of them has to do with clean energy itself.

The phrase “clean energy” normally conjures up happy, innocent images of warm sunshine and fresh wind. But while sunshine and wind is obviously clean, the infrastructure we need to capture it is not. Far from it. The transition to renewables is going to require a dramatic increase in the extraction of metals and rare-earth minerals, with real ecological and social costs.

We need a rapid transition to renewables, yes—but scientists warn that we can’t keep growing energy use at existing rates. No energy is innocent. The only truly clean energy is less energy.

In 2017, the World Bank released a little-noticed report that offered the first comprehensive look at this question. It models the increase in material extraction that would be required to build enough solar and wind utilities to produce an annual output of about 7 terawatts of electricity by 2050. That’s enough to power roughly half of the global economy. By doubling the World Bank figures, we can estimate what it will take to get all the way to zero emissions—and the results are staggering: 34 million metric tons of copper, 40 million tons of lead, 50 million tons of zinc, 162 million tons of aluminum, and no less than 4.8 billion tons of iron.

In some cases, the transition to renewables will require a massive increase over existing levels of extraction. For neodymium—an essential element in wind turbines—extraction will need to rise by nearly 35 percent over current levels. Higher-end estimates reported by the World Bank suggest it could double.

The same is true of silver, which is critical to solar panels. Silver extraction will go up 38 percent and perhaps as much as 105 percent. Demand for indium, also essential to solar technology, will more than triple and could end up skyrocketing by 920 percent.

And then there are all the batteries we’re going to need for power storage. To keep energy flowing when the sun isn’t shining and the wind isn’t blowing will require enormous batteries at the grid level. This means 40 million tons of lithium—an eye-watering 2,700 percent increase over current levels of extraction.

That’s just for electricity. We also need to think about vehicles. This year, a group of leading British scientists submitted a letter to the U.K. Committee on Climate Change outlining their concerns about the ecological impact of electric cars. They agree, of course, that we need to end the sale and use of combustion engines. But they pointed out that unless consumption habits change, replacing the world’s projected fleet of 2 billion vehicles is going to require an explosive increase in mining: Global annual extraction of neodymium and dysprosium will go up by another 70 percent, annual extraction of copper will need to more than double, and cobalt will need to increase by a factor of almost four—all for the entire period from now to 2050.

The problem here is not that we’re going to run out of key minerals—although that may indeed become a concern. The real issue is that this will exacerbate an already existing crisis of overextraction. Mining has become one of the biggest single drivers of deforestation, ecosystem collapse, and biodiversity loss around the world. Ecologists estimate that even at present rates of global material use, we are overshooting sustainable levels by 82 percent.

Take silver, for instance. Mexico is home to the Peñasquito mine, one of the biggest silver mines in the world. Covering nearly 40 square miles, the operation is staggering in its scale: a sprawling open-pit complex ripped into the mountains, flanked by two waste dumps each a mile long, and a tailings dam full of toxic sludge held back by a wall that’s 7 miles around and as high as a 50-story skyscraper. This mine will produce 11,000 tons of silver in 10 years before its reserves, the biggest in the world, are gone.

To transition the global economy to renewables, we need to commission up to 130 more mines on the scale of Peñasquito. Just for silver.

Lithium is another ecological disaster. It takes 500,000 gallons of water to produce a single ton of lithium. Even at present levels of extraction this is causing problems. In the Andes, where most of the world’s lithium is located, mining companies are burning through the water tables and leaving farmers with nothing to irrigate their crops. Many have had no choice but to abandon their land altogether. Meanwhile, chemical leaks from lithium mines have poisoned rivers from Chile to Argentina, Nevada to Tibet, killing off whole freshwater ecosystems. The lithium boom has barely even started, and it’s already a crisis.

And all of this is just to power the existing global economy. Things become even more extreme when we start accounting for growth. As energy demand continues to rise, material extraction for renewables will become all the more aggressive—and the higher the growth rate, the worse it will get.

It’s important to keep in mind that most of the key materials for the energy transition are located in the global south. Parts of Latin America, Africa, and Asia will likely become the target of a new scramble for resources, and some countries may become victims of new forms of colonization. It happened in the 17th and 18th centuries with the hunt for gold and silver from South America. In the 19th century, it was land for cotton and sugar plantations in the Caribbean. In the 20th century, it was diamonds from South Africa, cobalt from Congo, and oil from the Middle East. It’s not difficult to imagine that the scramble for renewables might become similarly violent.

If we don’t take precautions, clean energy firms could become as destructive as fossil fuel companies—buying off politicians, trashing ecosystems, lobbying against environmental regulations, even assassinating community leaders who stand in their way.

Some hope that nuclear power will help us get around these problems—and surely it needs to be part of the mix. But nuclear comes with its own constraints. For one, it takes so long to get new power plants up and running that they can play only a small role in getting us to zero emissions by midcentury. And even in the longer term, nuclear can’t be scaled beyond about 1 terawatt. Absent a miraculous technological breakthrough, the vast majority of our energy will have to come from solar and wind.

Reducing energy demand not only enables a faster transition to renewables, but also ensures that the transition doesn’t trigger new waves of destruction.

Posted in Alternative Energy, Alternative Energy Resources, Consumption | Tagged , , | 8 Comments

Oil Shocks. Airplanes are energy gluttons. Shut down the airports. Refine crude for ships, trains, and trucks.

Preface. As oil declines and the energy crisis worsens, airplanes ought to be the first to go since they are 600 times less energy efficient than large cargo ships (30,000 / 50), 50 to 120 times less efficient than trains, and 7.5 to 15 times less efficient than trucks.

This image has an empty alt attribute; its file name is transportation-eff-kj-per-ton-per-km.jpg

United States air carriers burn through 17 billion gallons of jet fuel annually. The amount of fuel an airliner needs depends on many factors, including aircraft type, weight and direction of travel. Here are some price estimates for 2019 (Stewart 2019):

  • Los Angeles International to Tokyo Narita: This trans-Pacific hop uses an estimated 9,500 gallons of jet fuel at an estimated price of $19,190.
  • New York JFK to Los Angeles International: This popular transcon flight uses an estimated 5,325 gallons of jet fuel at an estimated price tag of $10,757. The return to New York uses slightly less fuel at 5,075 gallons with an estimated price of $10,252.
  • Chicago O’Hare to Miami International: Heading southbound, this flight operates using an estimated 2,350 gallons, with an estimated cost of $4,747. On the northbound return, the cost estimate soars to $7,201, using an estimated 3,565 gallons.
  • Denver International to San Francisco International Airport: This particular route can see significant variances in fuel quantity and pricing because of the variety of aircraft operating between the two cities. On average, aircraft fill up with an estimated 3,500 gallons of jet fuel, costing an estimated $7,070. However, price can vary from $4,040 on the low end to $14,140 on the high end.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

Nygren, E., et al. 2009. Aviation fuel and future oil production scenarios. Energy Policy 37/10: 4003-4010

Jet fuel is extracted from the middle distillates fraction and competes with the production of diesel. Aviation fuel is almost exclusively extracted from the kerosene fraction of crude oil.

Today global oil production is roughly 81.5 million barrels per day (Mb/d), which is equivalent to an annual output of 3905.9 Mt.

Aviation fuels include both jet fuel for turbine engines and aviation gasoline for piston engines. The dominant fuel is jet fuel originating from crude oil as it is used in all large aircraft. Jet fuel is almost exclusively extracted from the kerosene fraction of crude oil, which distills between the gasoline fraction and the diesel fraction. The IEA estimated the world’s total refinery production in 2006 was 3861 million tonnes (Mt). The aviation fuel part was 6.3%, implying an annual aviation fuel production of 243 Mt (corresponding to about 5 Mb/d), including both jet fuel and aviation gasoline.

Figure 3 shows how the world’s refinery production is divided into different fractions.

Figure 3: Distribution of world refinery production in 2006. The total production was 3861 Mt. Source: International Energy Agency, 2008b. Key World Energy Statistics 2008 and previous editions, see also: http://www.iea.org/textbase/nppdf/free/2008/key_stats_2008.pdf

Figure 3: Distribution of world refinery production in 2006. The total production was 3861 Mt. Source: International Energy Agency, 2008b. Key World Energy Statistics 2008 and previous editions, see also: http://www.iea.org/textbase/nppdf/free/2008/key_stats_2008.pdf

If the refinery would like to increase jet fuel production, diesel production must decrease. During the year the proportion between diesel and jet fuel production changes and the fuel most profitable at that moment is produced.

Swedish Environmental class-1, ultra-low sulphur, diesel is a prioritized product, which has the consequence that no jet fuel at all is manufactured. The kerosene fraction is blended directly into the diesel fraction to provide the correct viscosity properties. Having fewer products is a way to increase the efficiency of the refinery.

The conclusion to be drawn is that aviation fuel production is not a fixed percentage of refinery output. In 2006, aviation fuel was 6.3% of world refinery production. The kerosene fraction is an average of 8-10% of the crude oil, but all kerosene does not become jet fuel or diesel. Kerosene can also be used to decrease the viscosity of the heavy fractions of crude oil and is used as lamp oil in certain parts of the world.

The environmental parameters that define the operating envelope for aviation fuels such as pressure, temperature and humidity vary dramatically both geographically and with altitude. Consequently, aviation fuel specifications have developed primarily on the basis of simulated performance tests rather than defined compositional requirements. Given the dependence on a single source of fuel on an aircraft and the flight safety implications, aviation fuels are subject to stringent testing and quality assurance procedures. The fuel is tested in a number of certified ways to be sure of obtaining the right properties following a specification of the international standards from, for example, IATA guidance material, ASTM specifications and UK defense standards (Air BP, 2000). Tests are done several times before the fuel is finally used in an airplane.

Today, the increasing addition of biofuels to diesel is a problem for the aviation industry. One of the more common biodiesels is FAME (Fatty Acid Methyl Esther). FAME is not a hydrocarbon and no non-hydrocarbons are allowed in jet fuel, except for approved additives as defined in the various international specifications such as DEF STAN 91-91 and ASTM D 1655. Consequently, biofuels-contaminated jet fuel cannot be utilized due to jet fuel standards. The problem with FAME is that it has the ability to be absorbed by metal surfaces. Diesel and jet fuel are often transported in a joint transport system making it possible for FAME stuck in tanks, pipelines and pumps to desorb to the jet fuel. The limit for contamination of jet fuel with FAME is 5 ppm. FAME can be picked up in any point of the supply chain, making 5 ppm a difficult limit and therefore the introduction of biofuels to the diesel fraction has had a negative impact upon jet fuel supply security.

References

Ashby, M.F., 2015. Materials and sustainable development table A.14.

Smil, Vaclav. 2010. Prime Movers of Globalization. The History and Impact of Diesel Engines and Gas Turbines pp 160, 204

Stewart, M. 2019. How much does it cost to fuel up an airliner? thepointsguy.com

Posted in Airplanes, Transportation | 4 Comments

Vaclav Smil on natural gas (ethane) and plastics

Preface. Vaclav Smil doesn’t mention using plastic for heat, but in a letter to The Guardian, David Reed suggests:

“The effort of collecting, transporting and cleaning plastics for possible recycling has largely failed, created much more pollution and contributed massively to climate change. The idea of burning plastics and using the energy to heat our homes was proposed by the plastics company Dow more than 30 years ago: it suggested treating all plastics as “borrowed oil”. At that time, ordinary domestic waste had a calorific value of low-grade coal, so the suggestion was that this waste should be burned in efficient plants with heat recovery and treatment of the gases produced, perhaps even trapping the carbon dioxide produced, rather than trying to recycle the complex (and dirty) mix of plastics.  Today, with higher use of more complex plastics, this makes even more sense. Mixed plastics cannot really be recycled: they are long-chain molecules, like spaghetti, so if you reheat and reprocess them, you inevitably end up with something of lower performance; it’s called down-cycling.”

While this could be polluting if not done right, people will certainly turn to burning plastic and anything else they can get their hands on at some point of energy decline. Better to do it correctly now in an incinerator than in backyards in the future as well as to protect our land and waterways from plastic pollution right now.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

Vaclav Smil. 2013. Making the Modern World: Materials and Dematerialization.  Wiley.

Polyethylene (PE) is by far the most important thermoplastic (it accounted for 29% of the world’s aggregate plastic output, or roughly 77 Mt, in 2010), polypropylene (PP) comes next (with about 19% or 50 Mt in 2010), followed by polyvinyl chloride (PVC, about 12% or 32 Mt in 2010).

In 2010, packaging consumed almost 40% of the total (mostly as various kinds of PE and PP), construction about 20% (mostly for plastic sheets used as vapor barriers in wall and ceiling insulation), the auto industry claimed nearly 8% (interior trim, exterior parts), and the electrical and electronic industry took about 6% (mostly for insulation of wires and cables).

All of these products begin as ethane. In North America and the Middle East ethane is separated from natural gas, and low gas prices and abundant supply led to surplus production for export and favored further construction of new capacities: in 2012 Qatar launched the world’s largest LDPE plant and, largely as a result of shale gas extraction, new ethylene capacities are planned in the USA (Stephan, 2012). The dominant feedstock for ethane in Europe, where prices of imported natural gas are high, is naphtha derived by the distillation of crude oil.

Plastics have a limited lifespan in terms of functional integrity: even materials that are not in contact with earth or water do not remain in excellent shape for decades. Service spans are no more than 2–15 years for PE, 3–8 years for PP, and 7–10 years for polyurethane; among the common plastics only PVC can last two or three decades and thick PVC cold water pipes can last even longer (Berge, 2009).

Some products made out of plastic:

  • Transparent or opaque bags (sandwich, grocery, or garbage)
  • sheets (for covering crops and temporary greenhouses),
  • wraps (Saran, Cling)
  • squeeze bottles (for honey)
  • HDPE garbage cans
  • containers (for milk, detergents, motor oil)
  • HDPE for house wraps (Tyvek) and water pipes
  • PEX for water pipes and as insulation for electrical cables
  • UHMWPE for knee and hip replacements.
  • massive LDPE water tanks
  • indoor–outdoor carpeting
  • lightweight fabrics woven from PP yarn and used particularly for outdoor apparel
  • insulated wires, water, and sewage pipes to food wraps and her car’s interior and body undercoating
  • disposable and surgical gloves
  • flexible tubing for feeding
  • breathing and pressure monitoring, catheters
  • blood bags
  • IV containers
  • sterile packaging
  • trays
  • basins
  • bed pans and rails
  • thermal blankets
  • lab ware
  • construction (house sidings, window frames)
  • outdoor furniture
  • water hoses
  • office gadgets
  • toys
Posted in Natural Gas, Vaclav Smil | 2 Comments

Venezuela collapse: looting, hunger, blackouts

Looted grocery store in San Cristobal, Venezuela

Preface. Venezuela is experiencing a double whammy of drought and low oil prices, which has lead to blackouts and inability to import food, ultimately due to their oil production peaking in 1997.  The same fate awaits the U.S. someday when oil declines.

Related posts:

And Mexico may be the next to collapse, as you can read here.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

2019. Venezuela’s Water System is Collapsing. New York Times.

In Venezuela, a crumbling economy and the collapse of even basic state infrastructure means water comes irregularly — and drinking it is an increasingly risky gamble. Scientists found that about a million residents were exposed to contaminated supplies. This puts them at risk of contracting waterborne viruses that could sicken them and threatens the lives of children and the most vulnerable.

The risks posed by poor water quality are particularly threatening for a population weakened by food and medication shortages. 

Electrical breakdowns and lack of maintenance have gradually stripped the city’s complex water system to a minimum. Water pumps, treatment plants, chlorine injection stations and entire reservoirs have been abandoned as the state ran out of money and skilled workers

Outside Caracas, the breakdown of the water infrastructure is even more profound, leaving millions without regular supplies and forcing communities to dig wells and rely on untreated rivers.

Kurmanaev, A., et al. 2019. A fuel shortage is crippling agriculture in Venezuela. New York Times.

The New York Times interviewed dozens of Venezuelan farmers. Nearly all have slashed their planting area this year and some are leaving their fields fallow – steps that are likely to deplete what is left of the food supply and lead even more Venezuelans to join the estimated four million who have already fled the country.

Farmers said they have tried to produce in spite of scarce inputs, price controls, crime, inflation and collapsing demand. But this year’s harvest is only half of 2018’s because of the gasoline shortage and other problems such as lack of seeds and fertilizer.

In Venezuela’s vast plains further east, sugar cane rots just yards from a refining mill and rice fields are left barren for the first time in 70 years because farmers don’t have fuel to transport their produce to distribution centers or seeds and fertilizers to plant new crops.

Venezuela’s main agricultural association, Fedeagro, estimates the area planted with the country’s main crops, corn and rice, will shrink by about 50% this year.

On a visit to Pueblo Llano last month, 150 cars waited outside the closed gas station for the sixth straight day. Many of the drivers slept in their cars to prevent robberies, braving the frigid weather at an altitude of 7,500 feet. During the day, they walked backed to their farmsteads, a trip that in some cases took hours. “While I’m sitting here in line, my produce is rotting in the fields,” said farmer Richard Rondón as he gave away summer squash as long as his arm from the back of his pickup truck to people passing by. “I got nothing to harvest with.”

The shortage has hamstrung the time-sensitive rice and corn harvest in the state of Portuguesa. In May, it prevented farmers from planting a new crop before the rainy season.

Pons, C. 2019. With Venezuela in collapse, towns slip into primitive isolation. Reuters.

At the once-busy beach resort of Patanemo, tourism has evaporated over the last two years as Venezuela’s economic crisis has deepened and deteriorating cellphone service left visitors too afraid of robbery to brave the isolated roads.   In some regions, travel requires negotiating roads barricaded by residents looking to steal from travelers.

These days, its Caribbean shoreline flanked by forested hills receives a different type of visitor: people who walk 10 minutes from a nearby town carrying rice, plantains or bananas in hopes of exchanging them for the fishermen’s latest catch.

With bank notes made useless by hyperinflation, and no easy access to the debit card terminals widely used to conduct transactions in urban areas, residents of Patanemo rely mainly on barter.  In visits to three villages across Venezuela, Reuters reporters saw residents exchanging fish, coffee beans and hand-picked fruit for essentials to make ends meet in an economy that shrank 48% during the first five years of President Nicolas Maduro’s government. 

Residents of the town of Guarico this year found a different way of paying bills – coffee beans for anything from haircuts to spare parts for agricultural machinery. The transactions are based on a reference price for how much coffee fetches on the local market, Linares said. In April, one kilo (2.2 pounds) of beans was worth the equivalent of $3.00. In El Tocuyo, another town in Lara state, three 100 kilo sacks of coffee buy 200 liters (53 gallons) of gasoline.

It is just one of a growing number of rural towns slipping into isolation as Venezuela’s economy implodes amid a long-running political crisis.

From the peaks of the Andes to Venezuela’s sweltering southern savannahs, the collapse of basic services including power, telephone and internet has left many towns struggling to survive.

Venezuela’s crisis has taken a heavy toll on rural areas, where the number of households in poverty reached 74% in 2017 compared with 34% in the capital of Caracas. Residents rarely travel to nearby cities, due to a lack of public transportation, growing fuel shortages and the prohibitive cost of consumer goods.

Lorente, M. 2019. Venezuela returns to ‘Middle Ages’ during power outages. Yahoo news. 

Walking for hours, making oil lamps, bearing water. For Venezuelans today, suffering under a new nationwide blackout that has lasted days, it’s like being thrown back to life centuries ago.

El Avila, a mountain that towers over Caracas, has become a place where families gather with buckets and jugs to fill up with water, wash dishes and scrub clothes. The taps in their homes are dry from lack of electricity to the city’s water pumps.  “We’re forced to get water from sources that obviously aren’t completely hygienic. But it’s enough for washing or doing the dishes,” said one resident, Manuel Almeida.

Because of the long lines of people, the activity can take hours of waiting.

Elsewhere, locals make use of cracked water pipes. But they still need to boil the water, or otherwise purify it.  “We’re going to bed without washing ourselves,” said one man, Pedro Jose, a 30-year-old living in a poorer neighborhood in the west of the capital.

Some shops seeing an opportunity have hiked the prices of bottles of water and bags of ice to between $3 and $5 — a fortune in a country where the monthly minimum salary is the equivalent of $5.50.

Better-off Venezuelans, those with access to US dollars, have rushed to fill hotels that have giant generators and working restaurants.

For others, preserving fresh food is a challenge. Finding it is even more difficult. The blackout has forced most shops to close.

We share food” among family members and friends, explained Coral Munoz, 61, who counts herself lucky to have dollars.

For Kelvin Donaire, who lives in the poor Petare district, survival is complicated.  He walks for more than an hour to the bakery where he works in the upmarket Los Palos Grandes area. “At least I’m able to take a loaf back home,” Donaire said.

Many inhabitants have taken to salting meat to preserve it without working refrigerators.

Others, more desperate, scour trash cans for food scraps. They are hurt most by having to live in a country where basic food and medicine has become scarce and out of reach because of rocketing hyperinflation.

The latest blackout this week also knocked out communications.  According to NetBlocks, an organization monitoring telecoms networks, 85% of Venezuela has lost connection.

In stores, cash registers no longer work and electronic payment terminals are blanked out. That’s serious in Venezuela, where even bread is bought by card because of lack of cash.  Some clients, trusted ones, are able to leave written IOUs.

With Caracas’s subway shut down, getting around the city is a trail, with choices between walking for miles, lining up in the out-sized hope of getting on one of the rare and badly overcrowded and dilapidated buses or managing to get fuel for a vehicle.  Pedro Jose said bus tickets have nearly doubled in price. 

As night casts Caracas into darkness, families light their homes as best they can. “We make lamps that burn gasoline, or oil, or kerosene — any type of fuel,” explained Lizbeth Morin, 30.

“We’ve returned to the Middle Ages.”

December 17, 2018 Planet money podcast: Bonus indicator: the measure of a tragedy

It’s hard to understand how bad a country is doing with figures like inflation rate, unemployment rate, and their minimum wage. A better way to understand a nation’s living standards is how many calories a person could afford to buy a day earning a minimum wage if they spent all of their money on food — that is — the food with the most calories, which in Venezuela has sometimes been pasta or flour, and today is the yucca plant.

Venezuelans could by 57,000 calories in 2012 with one day’s wages, and several dozen eggs.

But today a person can afford just 900 calories or 2 eggs. It would take a Venezuelan 6 weeks to be able to afford one Big Mac earning minimum wage.

Since the average person needs 2,000 calories a day, as well as calories to feed their family, and also housing, clothing, medicine, and so on, it’s not surprising that the average Venezuelan lost 24 pounds last year, and that Venezuela probably has the highest murder rate in the world.

The result is that at least 10% of Venezuelans have emigrated, nearly 3 million people. If that many proportionally left the U.S. we’d have 30 million people fleeing to Canada and Mexico and elsewhere.

July 16, 2018. Keith Johnson. How Venezuela Struck it poor. foreignpolicy.com

…”Venezuela’s murder rate, meanwhile, now surpasses that of Honduras and El Salvador, which formerly had the world’s highest levels, according to the Venezuelan Violence Observatory. Blackouts are a near-daily occurrence, and many people live without running water. According to media reports, schoolchildren and oil workers have begun passing out from hunger, and sick Venezuelans have scoured veterinary offices for medicine. Malaria, measles, and diphtheria have returned with a vengeance, and the millions of Venezuelans fleeing the country — more than 4 million, according to the International Crisis Group — are spreading the diseases across the region, as well as straining resources and goodwill.”

…”Thanks to their geology, Venezuela’s oil fields have enormous decline rates, meaning the country needs to spend more heavily than other petrostates just to keep production steady. “

2017-10-22 Oil Quality Issues Could Bankrupt Venezuela.  The next few weeks for Venezuela will be crucial, as it struggles to meet a huge stack of debt payments. Reports that the nation’s oil production is experiencing deteriorating quality raises a new cause for concern for the crumbling South American nation.Reuters reported that its oil shipments are “soiled with high levels of water, salt or metals that can cause problems for refineries”, which has led to $200 million in cancellations of oil contracts, making Venezuela even less able to make debt payments, since oil is the only source of revenue barely keeping the nation afloat. Many experienced oil workers have fled the country to find food and escape violence.  Because of these problems, and Trump imposed sanctions, U.S. imports have dropped from roughly 700,000 barrels per day to 250,000 bpd.

2017-5-2 Venezuela Is Heading for a Soviet-Style Collapse. A few lessons from the last time an oil economy crashed catastrophically

2017-2-27 ASPO Peak Oil Review: A new survey shows that 75% of Venezuelans may have lost an average of 19 pounds in the last year as widespread food shortages continue. Nearly a third of the population are now eating two meals a day or less. The survey also shows that the average shopper spends 35 hours a month waiting in line to buy food and other necessities. A sense of hopelessness has engulfed the country, and most no longer have an incentive or the strength to protest against the government and its policies as was happening two years ago. Government roundups of opposition politicians continue. Venezuela is clearly well on its way to becoming a failed state.

2016-11-1 Venezuela is telling hungry city dwellers to grow their own food. Washington Post

2016-10-21 Planet Money Podcast #731: How Venezuela Imploded

2016-8-23 Venezuela’s latest response to food shortages: Ban lines outside bakeries

2016-05-04 Hungry Venezuelans Hunt Dogs, Cats, Pigeons as Food Runs Out. Economic Crisis and Food Shortages Lead to Looting and Hunting Stray Animals  

Sabrina Martín. April 27, 2016. Looting On the Rise As Venezuela Runs Out of Food, Electricity. PanAmPost.

Food Producers Alert They Have Only 15 Days Left of Inventory amid Rampant Inflation

“Despair and violence is taking over Venezuela. The economic crisis sweeping the nation means people have to withstand widespread shortages of staple products, medicine, and food.  So when the Maduro administration began rationing electricity this week, leaving entire cities in the dark for up to 4 hours every day, discontent gave way to social unrest.

On April 26, people took to the streets in three Venezuelan states, looting stores to find food.

Maracaibo, in the western state of Zulia, is the epicenter of thefts: on Tuesday alone, Venezuelans raided pharmacies, shopping malls, supermarkets, and even trucks with food in seven different areas of the city.

Although at least nine people were arrested, and 2,000 security officers were deployed in the state, Zulia’s Secretary of Government Giovanny Villalobos asked citizens not to leave their homes. “There are violent people out there that can harm you,” he warned.

In Caracas, the Venezuelan capital, citizens reported looting in at least three areas of the city. Twitter users reported that thefts occurred throughout the night in the industrial zone of La California, Campo Rico, and Buena Vista.  The same happened in Carabobo, a state in central Venezuela.

Supermarkets employees from Valencia told the PanAm Post that besides no longer receiving the same amount of food as before, they must deal with angry Venezuelans who come to the stores only to find out there’s little to buy.

Purchases in supermarkets are rationed through a fingerprint system that does not allow Venezuelans to acquire the same regulated food for two weeks.

Due to the country’s mangled economy, millions must stand in long lines for hours just to purchase basic products, which many resell  for extra income as the country’s minimum wage is far from enough to cover a family’s needs.

On Wednesday, the Venezuelan Chamber of Food (Cavidea) said in a statement that most companies only have 15 days worth of stocked food.

According to the union, the production of food will continue to dwindle because raw materials as well as local and foreign inputs are depleted.

In the statement, Cavidea reported that they are 300 days overdue on payments to suppliers and it’s been 200 days since the national  government last authorized the purchase of dollars under the foreign currency control system.

The latest Survey of Living Conditions (Encovi) showed that more than 3 million Venezuelans eat only twice a day or less. The rampart inflation and low wages make it increasingly more difficult for people to afford food.

“Fruits and vegetables have disappeared from shopping lists. What you buy is what fills your stomach more: 40 percent of the basic groceries is made up of corn flour, rice, pasta, and fat”.

But not even that incomplete diet Venezuelans can live on because those food products are hard to come by. Since their prices are controlled by the government, they are scarce and more people demand them.

The survey also notes the rise of diseases such as gastritis, with an increase of 25 percent in 2015, followed by poisoning (24.11 percent), parasites (17.86 percent), and bacteria (10.71 percent).

The results of this study are consistent with the testimony of Venezuelan women, who told the PanAm Post that because “everything is so expensive” that they prefer to eat twice a day and leave lunch for their children. That way they can make do with the little portions they can afford.”

 

 
Posted in Central & South America, Social Disorder | Tagged , | 6 Comments

Peak Sand

Preface.  Sand Primer:

  • Without sand, there would be no concrete, ceramics, computer chips, glass, plastics, abrasives, paint and so on
  • We can’t use desert sand because it’s too round, polished by the wind, and doesn’t stick together. You need rough edges, so desert sand is worthless
  • Good sand  is getting so rare there’s an enormous amount of illegal mining in over 70 countries.  In India the Sand Mafia is one of the most powerful, will kill for sand. It’s easy to steal sand and sell there.
  • This has led to between 75%-90% of beaches in the world receding and a huge amount of environmental damage.
  • By 2100 all beaches will be gone
  • Australia is selling sand to nations that don’t have any more (like the United Arab Emirates, who used all of their ocean sand to make artificial islands)
  • Sand is a big business, sales are $70 Billion a year
  • concrete is 40% sand

How Much Sand is needed?

  • 200 tons  Average house
  • 3,000 tons  Hospital or other large building
  • 30,000 tons per kilometer of highway
  • 12,000,000 tons  Nuclear Power Plant (that’s equal to nearly 250 miles of highway)

Half of all sand is trapped behind the 845,000 dams in the world.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

Fountain, H., et al 2019. Melting Greenland Is Awash in Sand. New York Times.

Glaciers grind rocks into silt, sand and gravel.  Greenland hopes that there’s enough sand for them to become a sand exporter, if the environmental damage isn’t too high.

That won’t be easy.  Nearly all sand is mined within 50 miles of its destination because it costs too much to move it more than that.  So Greenland would have to find a way to make moving sand profitable.

A way to find the sand is required as well, since much of what the glacier produces is a fine silt that isn’t suitable for concrete.

Then if sand is found, an energy intensive process begins. A pipe is extended to the sea floor and sucks up water and sand.  Huge amounts of sand would need to be extracted into large bulk carriers, and new ports,and loading facilities built.  The distance to the nearest large cities is considerable longer than 50 miles. Boston is 2250 miles and London 1900 miles away.

Peak Sand in the news:

Gillis, J.R. November 4, 2014. Why Sand Is Disappearing. New York Times.

Extract, rearranged, sometimes paraphrased or reworded:

Today 75 to 90 percent of the world’s natural sand beaches are disappearing, due partly to massive legal and illegal mining, rising sea levels, increasing numbers of severe storms, and massive erosion from human development along coastlines. Many low-lying barrier islands are already submerged.

The sand and gravel business is now growing faster than the economy as a whole. In the United States, the market for mined sand has become a billion-dollar annual business, growing at 10% a year since 2008. Interior mining operations use huge machines working in open pits to dig down under the earth’s surface to get sand left behind by ancient glaciers. But as demand has risen — and the damming of rivers has held back the flow of sand from mountainous interiors — natural sources of sand have been shrinking.

One might think that desert sand would be a ready substitute, but its grains are finer and smoother; they don’t adhere to rougher sand grains, and tend to blow away. As a result, the desert state of Dubai brings sand for its beaches all the way from Australia.

And now there is a global beach-quality sand shortage, caused by the industries that have come to rely on it. Sand is vital to the manufacturing of abrasives, glass, plastics, microchips and even toothpaste, and, most recently, to the process of hydraulic fracturing. The quality of silicate sand found in the northern Midwest has produced what is being called a “sand rush” there, more than doubling regional sand pit mining since 2009.

But the greatest industrial consumer of all is the concrete industry. Sand from Port Washington on Long Island — 140 million cubic yards of it — built the tunnels and sidewalks of Manhattan from the 1880s onward. Concrete still takes 80 percent of all that mining can deliver. Apart from water and air, sand is the natural element most in demand around the world, a situation that puts the preservation of beaches and their flora and fauna in great danger. Today, a branch of Cemex, one of the world’s largest cement suppliers, is still busy on the shores of Monterey Bay in California, where its operations endanger several protected species.

The huge sand mining operations emerging worldwide, many of them illegal, are happening out of sight and out of mind, as far as the developed world is concerned. But in India, where the government has stepped in to limit sand mining along its shores, illegal mining operations by what is now referred to as the “sand mafia” defy these regulations. In Sierra Leone, poor villagers are encouraged to sell off their sand to illegal operations, ruining their own shores for fishing. Some Indonesian sand islands have been devastated by sand mining.
To those of us who visit beaches only in summer, they seem as permanent a part of our natural heritage as the Rocky Mountains and the Great Lakes. But shore dwellers know differently. Beaches are the most transitory of landscapes, and sand beaches the most vulnerable of all.
Yet the extent of this global crisis is obscured because so-called beach nourishment projects attempt to hold sand in place and repair the damage by the time summer people return, creating the illusion of an eternal shore.

Before next summer, endless lines of dump trucks will have filled in bare spots and restored dunes. Virginia Beach alone has been restored more than 50 times. In recent decades, East Coast barrier islands have used 23 million loads of sand, much of it mined inland and the rest dredged from coastal waters — a practice that disturbs the sea bottom, creating turbidity that kills coral beds and damages spawning grounds, which hurts inshore fisheries.

It is time for us to understand where sand comes from and where it is going. Sand was once locked up in mountains and it took eons of erosion before it was released into rivers and made its way to the sea. As Rachel Carson wrote in 1958, “in every curving beach, in every grain of sand, there is a story of the earth.” Now those grains are sequestered yet again — often in the very concrete sea walls that contribute to beach erosion.

We need to stop taking sand for granted and think of it as an endangered natural resource. Glass and concrete can be recycled back into sand, but there will never be enough to meet the demand of every resort. So we need better conservation plans for shore and coastal areas. Beach replenishment — the mining and trucking and dredging of sand to meet tourist expectations — must be evaluated on a case-by-case basis, with environmental considerations taking top priority. Only this will ensure that the story of the earth will still have subsequent chapters told in grains of sand.

Videos about Sand:

References

Coastal Care on Sand Mining: http://coastalcare.org/sections/inform/sand-mining/

Wiki on Sand mining: http://en.wikipedia.org/wiki/Sand_mining

Sand Mining Facts: http://threeissues.sdsu.edu/three_issues_sandminingfacts01.html

Stop illegal sand mining in India  http://www.washingtonpost.com/world/asia_pacific/indias-illegal-sand-mining-fuels-boom-ravages-rivers/2012/05/19/gIQA3HzdaU_story.html

———————————————————————————–

Below is a table from CRYSTALLINE SILICA PRIMER,  Industrial Minerals, U.S. Department of the Interior http://minerals.usgs.gov/minerals/pubs/commodity/silica/780292.pdf about how sand is used (see Table 2 for even more uses):

Table 1. Silica In Commodities And End-Product Applications

Commodity/form of silica/major commercial applications

  • Antimony / Quartz / Flame retardants, batteries, ceramics, glass, alloys
  • Bauxite / Quartz / Aluminum production, refractories, abrasives
  • Beryllium / Quartz / Electronic applications
  • Cadmium / Quartz, jasper, opal, etc. / Batteries, coatings and platings, pigments, plastics, alloys
  • Cement / None / Concrete (quartz in concrete mix)
  • Clay / Quartz, cristobalite / Paper, ceramics, paint, refractories
  • Copper / Quartz /Electrical conduction, plumbing, machinery
  • Crushed stone / Quartz /Construction
  • Diatomite / Quartz, amorphous silica /Filtration aids
  • Dimension stone / Quartz /Building facings
  • Feldspar / Quartz / Glass, ceramics, filler material
  • Fluorspar / Quartz /Acids, steel making flux, glass, enamel, weld rod coatings
  • Garnet / Quartz / Abrasives, filtration, gem stone
  • Germanium / Quartz, jasper, etc. / Infrared optics, fiber optics, semiconductors
  • Gold / Quartz, chert /Jewelry, dental, industrial, monetary
  • Gypsum / Quartz /Gypsum board (prefabricated building product), industrial and building plaster
  • Industrial sand / Quartz / Glass, foundry sand
  • Iron ore / Chert, quartz / Iron and steel industry
  • Iron oxide pigment / Chert, quartz, amorphous silica / Construction materials, paint, coatings
  • Lithium / Quartz /Ceramics, glass, aluminum product
  • Magnesite / Quartz / Refractories
  • Mercury / Quartz / Chlorine and caustic soda manufacture, batteries
  • Mica / Quartz / Joint cement, paint, roofing
  • Perlite / Quartz etc / Building construction products
  • Phosphate rock / Quartz / Fertilizers
  • Pumice / Volcanic glass, Quartz / Concrete aggregate, building block
  • Pyrophyllite / Quartz / Ceramics, refractories
  • Sand and gravel / Quartz / Construction
  • Selenium / Quartz / Photocopiers, glass manufacturing, pigments
  • Silicon / Quartz / Silicon and ferrosilicon for ferrous foundry and steel
  • industry; computers; photoelectric cells
  • Silver / Quartz, chert / Photographic material, electrical and electronic products
  • Talc / Quartz / Ceramics, paint, plastics, paper
  • Tellerium / Quartz / Steel and copper alloys, rubber compounding, electronics
  • Thallium / Quartz, etc / Electronics, superconductors, glass alloy
  • Titanium / Quartz / Pigments for paint, paper, plastics, metal for aircraft,
  • chemical processing equipment
  • Tungsten / Quartz / Cemented carbides for metal machining and wear-resistant components
  • Vanadium / Quartz, amorphous silica / Alloying element in iron, steel, and titanium
  • Zinc / Quartz, etc / Galvanizing, zinc-based alloys, chemicals, agriculture
  • Zircon / Quartz / Ceramics, refractories, zirconia production

In Heavy Industry

Foundry molds and cores for the production of metal castings are made from quartz sand. The manufacture of high-temperature silica brick for use in the linings of glass- and steel-melting furnaces represents another common use of crystalline silica in industry. The oil and gas industry uses crystalline silica to break up rock in wells. The operator pumps a water-sand mixture, under pressure, into the rock formations to fracture them so that oil and gas may be easily brought to the surface. More than 1 million tons of quartz sand were used annually for this purpose during the 1970’s and early 1980’s when oil-well drilling was at its peak. Quartz sand is also used for filtering sediment and bacteria from water supplies and in sewage treat ment. Although this use of crystalline silica has increased in recent years, it still represents a small proportion of the total use.

High-Tech Applications

Historically, crystalline silica, as quartz, has been a material of strategic importance. During World War II, communications components in telephones and mobile military radios were made from quartz. With today’s emphasis on military command, control, and communications surveillance and with modern advances in sophisticated electronic systems, quartz-crystal devices are in even greater demand. In the field of optics, quartz meets many needs. It has certain optical properties that permit its use in polarized laser beams. The field of laser optics uses quartz as windows, prisms, optical filters, and timing devices. Smaller portions of high-quality quartz crystals are used for prisms and lenses in optical instruments. Scientists are experimenting with quartz bars to focus sunlight in solar-power applications. Quartz crystals possess a unique property called piezoelectricity. A piezoelectric crystal converts mechanical pressure into electricity and vice versa. When a quartz crystal is cut at an exact angle to its axis, pressure on it generates a minute electrical charge, and likewise, an electrical charge applied to quartz causes it to vibrate more than 30,000 times per second in some applications. Piezoelectric quartz crystals are used to make electronic oscillators, which provide accurate frequency control for radio transmitters and radio-frequency telephone circuits. Incoming signals of interfering frequencies can be filtered out by piezoelectric crystals. Piezoelectric crystals are also used for quartz watches and other time-keeping devices

USGS 2011 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey SAND AND GRAVEL, CONSTRUCTION

(It’s 2014 but 2011 is the most recent data available, only a third of those queried responded, stats for sand vs gravel are not broken out, no information about ecological damage or theft, a pretty inept, incomplete report overall, but for what it’s worth): A total of 810 million metric tons (Mt) of construction sand and gravel was produced in the United States in 2011. This was a slight increase of 5 Mt from the revised production of 2010, the first increase in annual production since 2006, following 4 consecutive years of decreases. The slight improvement came in response to increased demand from certain State economies experiencing the boom in natural gas and oil production and from some construction segments.

As sand and gravel became less available owing to resource constraint or economic conditions in some locales, builders began to crush bedrock to produce a manufactured sand and gravel often referred to as crushed stone

Of the 810 Mt of construction sand and gravel produced in 2011, 60% was reported or estimated without a breakdown by end use (tables 4–5). Of the remaining 327 Mt, 44% was used as concrete aggregate; 25% was used for road base and coverings and road stabilization; 13%, for asphaltic concrete aggregate and other bituminous mixtures; 12%, for construction fill; about 1% each, for concrete products, plaster and gunite sands, and snow and ice control; and the remainder was used for golf course maintenance, filtration, railroad ballast, road stabilization, roofing granules, and many other miscellaneous uses.

The high cost of transportation limit foreign trade to mostly local transactions across international boundaries. U.S. imports and exports were equivalent to less than 1% of domestic consumption.

http://forcechange.com/71868/stop-illegal-sand-mining-in-india/

Posted in Concrete, Sand | Tagged , | Leave a comment

Boston Globe: the false promise of nuclear power

Preface. This article raises many objections to nuclear power. Theoretically it could be cheaper, but the exact opposite has happened, it keeps getting more expensive. For example the only new reactors being built in the U.S. now are at Georgia Power’s Vogtle plant. Costs were initially estimated at $14 billion; the latest estimate is $21 billion. The first reactors at the plant, built in the 1970s, took a decade longer to build than planned, and cost 10 times more than expected. The two under construction now were expected to be running 2016, but it’s now unlikely that they’ll be ready in 2022.

The authors also point out that reactors are vulnerable to catastrophes from extreme weather, earthquakes, volcanoes, tsunamis; from technical failure; and unavoidable human error. Climate change has led to severe droughts that shut down reactors as the surrounding waters become too warm to provide the vital cooling function.

And much more.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick Jensen, Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report

***

Jay Lifton, Naomi Oreskes. 2019. The false promise of nuclear power. Boston Globe.

Commentators from Greenpeace to the World Bank agree that climate change is an emergency, threatening civilization and life on our planet. Any solution must involve the control of greenhouse gas emissions by phasing out fossil fuels and switching to alternative technologies that do not impair the human habitat while providing the energy we require to function as a species.

This sobering reality has led some prominent observers to re-embrace nuclear energy. Advocates declare it clean, efficient, economical, and safe. In actuality it is none of these. It is expensive and poses grave dangers to our physical and psychological well-being. According to the US Energy Information Agency,the average nuclear power generating cost is about $100 per megawatt-hour. Compare this with $50 per megawatt-hour for solar and $30 to $40 per megawatt-hour for onshore wind. The financial group Lazard recently said that renewable energy costs are now “at or below the marginal cost of conventional generation” — that is, fossil fuels — and much lower than nuclear.

In theory these high costs and long construction times could be brought down. But we have had more than a half-century to test that theory and it appears have been solidly refuted. Unlike nearly all other technologies, the cost of nuclear power has risen over time. Even its supporters recognize that it has never been cost-competitive in a free-market environment, and its critics point out that the nuclear industry has followed a “negative learning curve.” Both the Nuclear Energy Agency and International Energy Agency have concluded that although nuclear power is a “proven low-carbon source of base-load electricity,” the industry will have to address serious concerns about cost, safety, and waste disposal if it is to play a significant role in addressing the climate-energy nexus.

But there are deeper problems that should not be brushed aside. They have to do with the fear and the reality of radiation effects. At issue is what can be called “invisible contamination,” the sense that some kind of poison has lodged in one’s body that may strike one down at any time — even in those who had seemed unaffected by a nuclear disaster. Nor is this fear irrational, since delayed radiation effects can do just that. Moreover, catastrophic nuclear accidents, however infrequent, can bring about these physical and psychological consequences on a vast scale. No technological system is ever perfect, but the vulnerability of nuclear power is particularly great. Improvements in design cannot eliminate the possibility of lethal meltdowns. These may result from extreme weather; from geophysical events such as earthquakes, volcanoes, and tsunamis (such as the one that caused the Fukushima event); from technical failure; and from unavoidable human error. Climate change itself works against nuclear power; severe droughts have led to the shutting down of reactors as the surrounding waters become too warm to provide the vital cooling function.

Advocates of nuclear energy invariably downplay the catastrophic events at Fukushima and Chernobyl. They point out that relatively few immediate deaths were recorded in these two disasters, which is true. But they fail to take adequate account of medical projections. The chaos of both disasters and their extreme mishandling by authorities have led to great disparity in estimates. But informed evaluations in connection with Chernobyl project future cancer deaths at anywhere from several tens of thousands to a half-million.

Studies of Chernobyl and Fukushima also reveal crippling psychological fear of invisible contamination. This fear consumed Hiroshima and Nagasaki, and people in Fukushima painfully associated their own experiences with those of people in the atomic-bombed cities. The situation in Fukushima is still far from physically or psychologically stable. This fear also plagues Chernobyl, where there have been large forced movements of populations, and where whole areas poisoned by radiation remain uninhabitable.

The combination of actual and anticipated radiation effects — the fear of invisible contamination — occurs wherever nuclear technology has been used: not only at the sites of the atomic bombings and major accidents, but also at Hanford, Wash., in connection with plutonium waste from the production of the Nagasaki bomb; at Rocky Flats, Colo., after decades of nuclear testing; and at test sites in Nevada and elsewhere after soldiers were exposed to radiation following atomic bomb tests.

Nuclear reactors also raise the problem of nuclear waste, for which no adequate solution has been found despite a half-century of scientific and engineering effort. Even when a reactor is considered unreliable and is closed down, as occurred recently with the Pilgrim Point reactor in Plymouth, or closes for economic reasons, as at Vermont Yankee, the accumulated waste remains at the site, dangerous and virtually immortal. Under the 1982 Nuclear Waste Policy Act, the United States was required to develop a permanent repository for nuclear waste; nearly 40 years later, we still lack that repository.

Finally there is the gravest of dangers: plutonium and enriched uranium derived from nuclear reactors’ contributing to the building of nuclear weapons. Steps can be taken to reduce that danger by eliminating plutonium as a fuel, but wherever extensive nuclear power is put into use there is the possibility of its becoming weaponized. Of course, this potential weaponization makes nuclear reactors a tempting target for terrorists.

There are now more than 450 nuclear reactors throughout the world. If nuclear power is embraced as a rescue technology, there would be many times that number, creating a worldwide chain of nuclear danger zones — a planetary system of potential self-annihilation. To be fearful of such a development is rational. What is irrational is to dismiss this concern, and to insist, after the experience of more than a half-century, that a “fourth generation” of nuclear power will change everything.

Advocates of nuclear power frequently compare it to carbon-loaded coal. But coal is not the issue; it is already making its way off the world stage. The appropriate comparison is between nuclear and renewable energies. Renewables are part of an economic and energy revolution: They have become available far more quickly, extensively, and cheaply than most experts predicted, and public acceptance is high. To use renewables on the necessary scale, we will need improvements in energy storage, grid integration, smart appliances, and electric vehicle charging infrastructure. We should have an all-out national effort — reminiscent of World War II or, ironically, the making of the atomic bomb — that includes all of these areas to make renewable energies integral to the American way of life. Gas and nuclear will play a transitional role, but it is not pragmatic to bet the planet on a technology that has consistently underperformed and poses profound threats to our bodies and our minds.

Above all, we need to free ourselves of the “nuclear mystique” : the magic aura that radiation has had since the days of Marie Curie. We must question the misleading vision of “Atoms for Peace,” a vision that has always accompanied the normalization of nuclear weapons. We must free ourselves from the false hope that a technology designed for ultimate destruction could be transmogrified into ultimate life-enhancement.

Posted in Nuclear Power | Tagged , , , , , | 6 Comments