Peak Soil: Why Biofuels are Not Sustainable and a Threat to America’s National Security

Alice Friedemann.  2007.   Last updated April 18, 2014

“The nation that destroys its soil destroys itself”, President Franklin D. Roosevelt

There’s growing public attention from the people, all the way on down to the President, about biomass potential for energy.  There’s been a public discussion about many aspects and what the problems might be.  But there’s one aspect of all of this that is conspicuous by its absence – a national discussion of anything about the soil science – the effect growing row crops like corn and soy have on the land and water.

Whatever biomass we’re going to grow, there are important issues about net energy gain and the carbon balance, but we also need to deal with the root of the matter – the soils, and water, and whether growing biomass for fuel can be made sustainable.

The lack of any kind of input on this by soil scientists about how we’re mining our soils is a voice that needs to be heard, because if you destroy the soil, you can’t grow biomass.

Part 1.  The Dirt on Dirt.

Ethanol is an agribusiness get-rich-quick scheme that will bankrupt our topsoil.

Nineteenth century western farmers converted their corn into whiskey to make a profit (Rorabaugh 1979).  Archer Daniels Midland, a large grain processor, came up with the same scheme in the 20th century.  But ethanol was a product in search of a market, so ADM spent three decades relentlessly lobbying for ethanol to be used in gasoline. Today ADM makes record profits from ethanol sales and government subsidies (Barrionuevo 2006).

The Department of Energy hopes to have biomass supply 5% of the nation’s power, 20% of transportation fuels, and 25% of chemicals by 2030. These combined goals are 30% of the current petroleum consumption (DOE Biomass Plan, DOE Feedstock Roadmap).

Fuels made from biomass are a lot like the nuclear powered airplanes the Air Force tried to build from 1946 to 1961, for billions of dollars. They never got off the ground.  The idea was interesting – atomic jets could fly for months without refueling.  But the lead shielding to protect the crew and several months of food and water was too heavy for the plane to take off.  The weight problem, the ease of shooting this behemoth down, and the consequences of a crash landing were so obvious, it’s amazing the project was ever funded, let alone kept going for 15 years.

Biomass fuels have equally obvious and predictable reasons for failure. Odum says that time explains why renewable energy provides such low energy yields compared to non-renewable fossil fuels.  The more work left to nature, the higher the energy yield, but the longer the time required.  Although coal and oil took millions of years to form into dense, concentrated solar power, all we had to do was extract and transport them (Odum 1996)

With every step required to transform a fuel into energy, there is less and less energy yield.   For example, to make ethanol from corn grain, which is how all ethanol is made now, corn is first grown to develop hybrid seeds, which next season are planted, harvested, delivered, stored, and preprocessed to remove dirt.  Dry-mill ethanol is milled, liquefied, heated, saccharified, fermented, evaporated, centrifuged, distilled, scrubbed, dried, stored, and transported to customers (McAloon 2000).

Fertile soil will be destroyed if crops and other “wastes” are removed to make cellulosic ethanol. 

“We stand, in most places on earth, only six inches from desolation, for that is the thickness of the topsoil layer upon which the entire life of the planet depends” (Sampson 1981).

Loss of topsoil has been a major factor in the fall of civilizations (Sundquist 2005 Chapter 3, Lowdermilk 1953, Perlin 1991, Ponting 1993).  You end up with a country like Iraq, formerly Mesopotamia, where 75% of the farm land is a salty desert.

Fuels from biomass are not sustainable, are ecologically destructive, have a net energy loss, and there isn’t enough biomass in America to make significant amounts of energy because essential inputs like water, land, fossil fuels, and phosphate ores are limited.

A solar cell can convert 100 times as much energy into electricity as a plant can (Institute of Medicine 2014)

The real challenge with bioenergy, according to Timothy Searchinger, a research scholar and a lecturer in public and international affairs at Princeton University, is that photosynthesis is extremely inefficient. “If you’re really lucky you get half a percent of the solar energy transformed into plant biomass. And eventually maybe a tenth or two-tenths of the original solar energy will end up  in delivered energy like electricity.” By contrast, a solar cell turns 10% of solar energy into electricity [50 to 100 times more than a plant does].

It takes a tremendous amount of land to make a small amount of bioenergy:

  • To provide 10% of the world’s transportation fuel by 2050 would require 36% of all of today’s crop production — less than 2% of the world’s delivered energy
  • To provide 20% of the world’s energy from biofuels would require all of the plants harvested today around the world for any purpose—all crops, all grasses eaten by livestock, all wood, and all crop residues.
  • Biofuels in use today—ethanol from corn, sugarcane, wheat, sugar beets, and other plants, and biodiesel from vegetable oils from such plants as soybeans and rapeseed are not very efficient in harvesting energy from the sun. Calculating efficiency in terms of how much energy is available from the biofuel versus how much energy was in the sunlight hitting the plants used to produce the biofuel, the efficiency of ethanol made from corn is only about 0.03 percent.
  • About 40% of the U.S. corn crop is used to make ethanol, but that is a very small part of the nation’s overall energy use–about 1% of total U.S. energy and 4% by energy content—of the supply of transportation fuels.
  • Increasing biofuels production would not reduce greenhouse gas emissions. A human consumes about 2,000 kilocalories per day in food, he said, which is about 8,000 BTU. In 1800, that was what the average person had to work with. If they went to chop wood, they were using that 8,000 BTU as an investment to chop wood to get wood. Today people in North America use an average of 740,000 BTU per person each day. This staggering increase in energy consumption is what allows our modern lifestyle. About 60% of that daily energy usage is indirect—used to make the various items that people use in their lives, from smart phones and food to roads and buildings—and about half of individuals’ direct energy usages is for personal vehicles.

Soil Science 101 – There Is No “Waste” Biomass

Long before there was “Peak Oil”, there was “Peak Soil”. Iowa has some of the best topsoil in the world.  In the past century, half of it’s been lost, from an average of 18 to 10 inches deep (Pate 2004, Klee 1991).

20 to 40 pounds of soil are eroded for every gallon of ethanol produced (Institute of Medicine 2014).

Productivity drops off sharply when topsoil reaches 6 inches or less, the average crop root zone depth (Sundquist 2005).

Crop productivity continually declines as topsoil is lost and residues are removed.  (Al-Kaisi May 2001, Ball 2005, Blanco-Canqui 2006, BOA 1986, Calviño 2003, Franzleubbers 2006, Grandy 2006, Johnson 2004, Johnson 2005, Miranowski 1984, Power 1998, Sadras 2001, Troeh 2005, Wilhelm 2004).

On over half of America’s best crop land, the erosion rate is 27 times the natural rate, 11,000 pounds per acre (NCRS 2006). The natural, geological erosion rate is about 400 pounds of soil per acre per year (Troeh 2005).  Some is due to farmers not being paid enough to conserve their land, but most is due to investors who farm for profit.  Erosion control cuts into profits.

Erosion is happening ten to twenty times faster than the rate topsoil can be formed by natural processes (Pimentel 2006).  That might make the average person concerned.  But not the USDA — they’ve defined erosion as the average soil loss that could occur without causing a decline in long term productivity.

Troeh (2005) believes that the tolerable soil loss (T) value is set too high, because it’s based only on the upper layers — how long it takes subsoil to be converted into topsoil.  T ought to be based on deeper layers – the time for subsoil to develop from parent material or parent material from rock.  If he’s right, erosion is even worse than NCRS figures.

We’ve come a long way since the 1930′s in reducing erosion, but that only makes it more insidious.  Erosion is very hard to measure — very little soil might erode for years, and then tons per acre blown or washed away in an extreme storm just after harvest, before a cover crop has had a chance to protect the soil.  We need better ways of measuring and monitoring erosion, since estimates wildly differ (Trimble 2000).

Erosion removes the most fertile parts of the soil (USDA-ARS).  When you feed the soil with organic matter, you’re not feeding plants; you’re feeding the biota in the soil. Underground creatures and fungi break down fallen leaves and twigs into microscopic bits that plants can eat, and create tunnels air and water can infiltrate.  In nature there are no elves feeding (fertilizing) the wild lands.  When plants die, they’re recycled into basic elements and become a part of new plants.  It’s a closed cycle.  There is no bio-waste.

Soil creatures and fungi act as an immune system for plants against diseases, weeds, and insects – when this living community is harmed by agricultural chemicals and fertilizers, even more chemicals are needed in an increasing vicious cycle (Wolfe 2001).

There’s so much life in the soil, there can be 10 “biomass horses” underground for every horse grazing on an acre of pasture (Hemenway 2000). The June 2004 issue of Science calls soils “The Final Frontier”.  Just a tiny pinch of earth could have 10,000 different species (Wardle 2004) — millions of creatures, most of them unknown.  If you dove into the soil and swam around, you’d be surrounded by thousands of miles of thin strands of mycorrhizal fungi that help plant roots absorb more nutrients and water (Pennisi 2004).  As you swam along, plant roots would tower above you like trees as you wove through underground skyscrapers.

Plants and creatures underground need to drink, eat, and breathe just like we do.   An ideal soil is half rock, and a quarter each water and air.  When tractors plant and harvest, they crush the life out of the soil, as underground apartments collapse 9/11 style.   The tracks left by tractors in the soil are the erosion route for half of the soil that washes or blows away (Wilhelm 2004).

Corn Biofuel (i.e. butanol, ethanol, biodiesel) is especially harmful because:

  • Row crops like corn and soy cause 50 times more soil erosion than sod crops (Sullivan 2004) or more (Al-Kaisi 2000), because the soil between rows can wash or blow away. If corn is planted with last years corn stalks left on the ground (no-till), erosion is less of a problem, but only about 20% of corn is grown no-till.  Soy is usually grown no-till, but has insignificant residues to harvest for fuel.
  • Corn uses more water than most crops.  It takes about 118 gallons of water to produce 1 pound of corn, and 21 pounds of corn to make a gallon of ethanol.  So you’d need about 2.5 trillion gallons of water to make a billion gallons of ethanol, more than all the water southern California receives from the Sacramento-San Joaquin Delta (Sacramento Bee 2007).
  • In the life cycle of making corn ethanol, 99% of the water used grows the corn, only 1% is used in the industrial process.  From seed to fuel, this requires 1,500 gallons of water per gallon of ethanol.  In the industrial phase, cellulosic ethanol requires twice as much water.  California and other states that grow crops with irrigation rather than rain water would require displacing food crops with energy crops, and there already isn’t enough water for food, people, and fisheries (Fingerman 2008).
  • Corn uses more agrichemicals, and fertilizer than most crops (Padgitt 2000, Pimentel 2003). Due to high corn prices, continuous corn (corn crop after corn crop) is increasing, rather than rotation of nitrogen fixing (fertilizer) and erosion control sod crops with corn.
  • Corn plants are amazingly good at absorbing nitrogen from the soil and storing it in the grain itself. Thus, it takes a lot of fertilizer to replace that nitrogen, but if it rains after the application of fertilizer, down the the Mississippi it goes. A large part of the problem with runoff of nitrogen (and soil) is because corn is known as a “leaky crop” because nutrients inevitably leak out because the land is bare half of each year (Institute of Medicine 2014).
  • The government has studied the effect of growing continuous corn, and found it increases eutrophication by 189%, global warming by 71%, and acidification by 6% (Powers 2005).  Production of ethanol results in 8 grams of nutrients  for every gallon of ethanol that ends up in the Gulf of Mexico (Institute of Medicine 2014).
  • Farmers want to plant corn on highly-erodible, water protecting, or wildlife sustaining Conservation Reserve Program land. Farmers are paid not to grow crops on this land. But with high corn prices, farmers are now asking the Agricultural Department to release them from these contracts so they can plant corn on these low-producing, environmentally sensitive lands (Tomson 2007).
  • Crop residues are essential for soil protection, nutrition, water retention, and soil carbon.  Making cellulosic ethanol from corn residues — the parts of the plant we don’t eat (stalk, roots, and leaves) – removes water, carbon, and nutrients (Nelson, 2002, McAloon 2000, Sheehan, 2003).

These practices lead to lower crop production and ultimately deserts. Growing plants for fuel will accelerate the already unacceptable levels of topsoil erosion, soil carbon and nutrient depletion, soil compaction, water retention, water depletion, water pollution, air pollution, eutrophication, destruction of fisheries, siltation of dams and waterways, salination, loss of biodiversity, and damage to human health  (Tegtmeier 2004).

Why are soil scientists absent from the biofuels debate?

I asked 35 soil scientists why topsoil wasn’t part of the biofuels debate.  These are just a few of the responses from the ten who replied to my off-the-record poll (no one wanted me to quote them, mostly due to fear of losing their jobs):

  • ”I have no idea why soil scientists aren’t questioning corn and cellulosic ethanol plans.  Quite frankly I’m not sure that our society has had any sort of reasonable debate about this with all the facts laid out.  When you see that even if all of the corn was converted to ethanol and that would not provide more than 20% of our current liquid fuel use, it certainly makes me wonder, even before considering the conversion efficiency, soil loss, water contamination, food price problems, etc.”
  • Biomass production is not sustainable. Only business men and women in the refinery business believe it is.
  • “Should we be using our best crop land to grow gasohol and contribute further to global warming?  What will our children grow their food on?”
  • “As agricultural scientists, we are programmed to make farmer’s profitable, and therefore profits are at the top of the list, and not soil, family, or environmental sustainability”.
  • “Government policy since WWII has been to encourage overproduction to keep food prices down (people with full bellies don’t revolt or object too much).  It’s hard to make a living farming commodities when the selling price is always at or below the break even point.  Farmers have had to get bigger and bigger to make ends meet since the margins keep getting thinner and thinner.  We have sacrificed our family farms in the name of cheap food.  When farmers stand to make few bucks (as with biofuels) agricultural scientists tend to look the other way”.
  • You are quite correct in your concern that soil science should be factored into decisions about biofuel production.  Unfortunately, we soil scientists have missed the boat on the importance of soil management to the sustainability of biomass production, and the long-term impact for soil productivity.

This is not a new debate.  Here’s what scientists had to say decades ago:

Removing “crop residues…would rob organic matter that is vital to the maintenance of soil fertility and tilth, leading to disastrous soil erosion levels.  Not considered is the importance of plant residues as a primary source of energy for soil microbial activity. The most prudent course, clearly, is to continue to recycle most crop residues back into the soil, where they are vital in keeping organic matter levels high enough to make the soil more open to air and water, more resistant to soil erosion, and more productive” (Sampson 1981).

“…Massive alcohol production from our farms is an immoral use of our soils since it rapidly promotes their wasting away.  We must save these soils for an oil-less future” (Jackson 1980).

Gasohol was made so poorly in the 80′s that the name was changed to ethanol.

What the USDA knew about continuous corn in 1911:

“When the rich, black, prairie corn lands of the Central West were first broken up, it was believed that these were … inexhaustible lands …  So crop after crop of corn was planted on the same fields.  There came a time, however, after 15 or 20 years, when the crop did not respond to cultivation; the yields fell off and the lands that once produced 60-70 bushels per acre annually dropped to 25 to 30 bushels.

…  With the passing years, the soil became more compact, droughts were more injurious, and the soil baked harder and was more difficult to handle. Continuous corn culture has no place in progressive farming…it is a shortsighted policy and is suicidal on lands that have been long under cultivation” (Smith 1911).

Natural Gas in Agriculture

“Fertilizer energy” is 28% of the energy used in agriculture (Heller, 2000).  Fertilizer uses natural gas both as a feedstock and the source of energy to create the high temperatures and pressures necessary to coax inert nitrogen out of the air (nitrogen is often the limiting factor in crop production).

Fertilizers only replace nutrition.  They don’t provide the ecosystem services that organic matter does.  Organic matter is known as “waste” in the biofuels industry.

Organic matter slows erosion and fixes carbon in the soil.  Dead plants and the soil biota that feed on them create channels that let air and water get to plant roots, which breathe and drink just like we do.  The soil retains water, helping plants get through droughts.

Organic matter provides food for the soil biota, which provide an immune system for plants.  The mycorrhizal fungi in the soil provide plants extra nutrients and water in exchange for sugars.

Fertilizer not only provides no ecosystem services, it harms the ecosystem.  Fertilizer disables or kills some of the creatures in the soil web, which increases the need for agrichemicals in an increasingly vicious cycle.

Fertilizers increase global warming, acid rain, and eutrophication.

You can grow tomatoes on rocks if you dump enough fertilizer on them. But doing so depletes the soil, we mine it when we do this.

Fertilizer represents 28% of the energy used in agriculture.  So let me get this straight.  Fertilizers are made from and with natural gas which we’re dumping on crops to grow them for biofuel.  We’re going to take the biomass waste away, which means we’ll have to add even more fertilizer. How, exactly, does that lessen our dependence on fossil fuels?

OK, one good thing, sort of. Fertilizer is part of the green revolution that made it possible for the world’s population to grow from 1 billion to 7.1 billion people (Smil 2000, Fisher 2001).   Up to 6 billion are alive who otherwise wouldn’t be.  But natural gas is a finite resource on a finite planet, and is not easily imported, and despite all the hype about fracking in the United States, natural gas production is likely to peak 2015 to 2018 (Powers 2013). Discontinuities clearly lie ahead.

Our national security is at risk as we deplete our aquifers and become dependent on unstable foreign states to provide us with increasingly expensive fertilizer.  Between 1995 and 2005 we increased our fertilizer imports by more than 148% for Anhydrous Ammonia, 93% for Urea (solid), and 349 % of other nitrogen fertilizers (USDA ERS).  Removing crop residues will require large amounts of imported fertilizer from potential cartels, potentially so expensive farmers won’t sell crops and residues for biofuels.

Improve national security and topsoil by returning residues to the land as fertilizer. We are vulnerable to high-priced fertilizer imports or “food for oil”, which would greatly increase the cost of food for Americans.  Return crop residues to the soil to provide organic fertilizer, don’t increase the need for natural gas fertilizers by removing crop residues to make cellulosic biofuels.

Part 2. The Poop on Ethanol:

Energy Returned on Energy Invested (EROEI)

To understand the concept of EROEI, imagine a magician doing a variation on the rabbit-out-of-a-hat trick.  He strides onstage with a rabbit, puts it into a top hat, and then spends the next five minutes pulling 100 more rabbits out. That is a pretty good return on investment!

Oil was like that in the beginning: one barrel of oil energy was required to get 100 more out, an Energy Returned on Energy Invested of 100:1.

When the biofuel magician tries to do the same trick decades later, he puts the rabbit into the hat, and pulls out only one pooping rabbit.  The excrement is known as byproduct or coproduct in the ethanol industry.

Studies that show a positive energy gain for ethanol would have a negative return if the byproduct were left out (Farrell 2006).   Here’s where byproduct comes from: if you made ethanol from corn in your back yard, you’d dump a bushel of corn, two gallons of water, and yeast into your contraption.   Out would come 18 pounds of ethanol, 18 pounds of CO2, and 18 pounds of byproduct – the leftover corn solids.

Patzek and Pimentel believe you shouldn’t include the energy contained in the byproduct, because you need to return it to the soil to improve nutrition and soil structure (Patzek June 2006).  Giampetro believes the byproduct should be treated as a “serious waste disposal problem and … an energy cost”, because if we supplied 10% of our energy from biomass, we’d generate 37 times more livestock feed than is used (Giampetro 1997).

It’s even worse than he realized – Giampetro didn’t know most of this “livestock feed” can’t be fed to livestock because it’s too energy and monetarily expensive to deliver – especially heavy wet distillers byproduct, which is short-lived, succumbing to mold and fungi after 4 to 10 days. Also, byproduct is a subset of what animals eat.  Cattle are fed byproduct in 20% of their diet at most.  Iowa’s a big hog state, but commercial swine operations feed pigs a maximum of 5 to 10% byproduct (Trenkle 2006; Shurson 2003).

Worst of all, the EROEI of ethanol is 1.2:1 or 1.2 units of energy out for every unit of energy in, a gain of “.2”.  The “1” in “1.2” represents the liquid ethanol.  What is the “.2” then?  It’s the rabbit feces – the byproduct. So you have no ethanol for your car, because the liquid “1” needs to be used to make more ethanol.  That leaves you with just the “.2” — a bucket of byproduct to feed your horse – you do have a horse, don’t you?  If horses are like cattle, then you can only use your byproduct for one-fifth of his diet, so you’ll need four supplemental buckets of hay from your back yard to feed him.  No doubt the byproduct could be used to make other things, but that would take energy.

Byproduct could be burned, but it takes a significant amount of energy to dry it out, and requires additional handling and equipment.  More money can be made selling it wet to the cattle industry, which is hurting from the high price of corn.   Byproduct should be put back into the ground to improve soil nutrition and structure for future generations, not sold for short-term profit and fed to cattle who aren’t biologically adapted to eating corn.

The boundaries of what is included in EROEI calculations are kept as narrow as possible to reach positive results.

Researchers who find a positive EROEI for ethanol have not accounted for all of the energy inputs.  For example, Shapouri admits the “energy used in the production of … farm machinery and equipment…, and cement, steel, and stainless steel used in the construction of ethanol plants, are not included”. (Shapouri 2002).  Or they assign overstated values of ethanol yield from corn (Patzek Dec 2006).  Many, many, other inputs are left out.

Patzek and Pimentel have compelling evidence showing that about 30 percent more fossil energy is required to produce a gallon of ethanol than you get from it.  Their papers are published in peer-reviewed journals where their data and methods are public, unlike many of the positive net energy results.

Infrastructure.  Current EROEI figures don’t take into account the delivery infrastructure that needs to be built.  There are 850 million combustion engines in the world today.  Just to replace half the 245 million cars and light trucks in the United States with E85 vehicles will take 12-15 years, It would take over $544 million dollars of delivery ethanol infrastructure (Reynolds 2002 case B1) and $5 to $34 billion to revamp 170,000 gas stations nationwide (Heinson 2007).

The EROEI of oil when we built most of the infrastructure in this country was about 100:1, and it’s about 25:1 worldwide now.  Even if you believe ethanol has a positive EROEI, you’d probably need at least an EROEI of at least 5 to maintain modern civilization (Hall 2003).  A civilization based on ethanol’s “.2” rabbit poop would only work for coprophagous rabbits.

Of the four articles that showed a positive net energy for ethanol in Farrells 2006 Science article, three were not peer-reviewed.   The only positive peer-reviewed article (Dias De Oliveira, 2005) states “The use of ethanol as a substitute for gasoline proved to be neither a sustainable nor an environmentally friendly option” and the “environmental impacts outweigh its benefits”. Dias De Oliveria concluded there’d be a tremendous loss of biodiversity, and if all vehicles ran on E85 and their numbers grew by 4% per year, by 2048, the entire country, except for cities, would be covered with corn.

Part 3.  Do you want to drink, eat, or drive?

The energy to remediate environmental damage is left out of EROEI calculations.

Global Warming

Soils contain 3.3 times the amount of carbon found in the atmosphere, and 4.5 times more carbon than is stored in all the Earth’s vegetation (Lal 2004).

If we want to reduce global warming, storing carbon in the soil will be essential.  But that will be hard to pull off, because Climate change could increase soil loss by 33% to 274%, depending on the region (O’Neal 2005).

Worse yet, we keep building suburbia and shopping malls on top of crop land.

Population in the United States could reach over one billion people by 2100 (U.S. Census Bureau 2000), so what will happen is that we’ll need more crop land and have to cut down bottomland forests and fill in wetlands to grow food, which will reduce stored carbon and biodiversity even further.

Intensive agriculture has already removed 20 to 50% of the original soil carbon, and some areas have lost 70%. To maintain soil C levels, no crop residues at all could be harvested under many tillage systems or on highly erodible lands, and none to a small percent on no-till, depending on crop production levels (Johnson 2006).

Deforestation of temperate hardwood forests, and conversion of range and wetlands to grow energy and food crops increases global warming. An average of 2.6 million acres of crop land were paved over or developed every year between 1982 and 2002 in the USA (NCRS 2004). The only new crop land is forest, range, or wetland.

Rainforest destruction is increasing global warming.   Energy farming is playing a huge role in deforestion, reducing biodiversity, water and water quality, and increasing soil erosion. Fires to clear land for palm oil plantations are destroying one of the last great remaining rainforests in Borneo, spewing so much carbon that Indonesia is third behind the United States and China in releasing greenhouse gases.  Orangutans, rhinos, tigers and thousands of other species may be driven extinct (Monbiot 2005). Borneo palm oil plantation lands have grown 2,500% since 1984 (Barta 2006). Soybeans cause even more erosion than corn and suffer from all the same sustainability issues.  The Amazon is being destroyed by farmers growing soybeans for food (Wallace 2007) and fuel (Olmstead 2006).

Land Grabs.  Millions of acres of land are being stolen from local people by international corporations around the globe who bribe corrupt officials to grab land, decimate (rain)forests, and grow palm oil s after the land has been stripped bare.  This releases so much carbon dioxide from the loss of the trees and peat soils that any biofuels produced (and corn ethanol for that matter), release far more greenhouse gases than fossil fuels (Pearce 2013, Institute of Medicine 2014).

Biofuel from coal-burning biomass factories increases global warming (Farrell 2006).  Driving a mile on ethanol from a coal-using biorefinery releases more CO2 than a mile on gasoline (Ward 2007). Coal in ethanol production is seen as a way to displace petroleum (Farrell 2006, Yacobucci 2006) and it’s already happening (Clayton 2006).

Current and future quantities of biofuels are too minuscule to affect global warming   (ScienceDaily 2007).

Surface Albedo. “How much the sun warms our climate depends on how much sunlight the land reflects (cooling us), versus how much it absorbs (heating us). A plausible 2% increase in the absorbed sunlight on a switch grass plantation could negate the climatic cooling benefit of the ethanol produced on it. We need to figure out now, not later, the full range of climatic consequences of growing cellulose crops” (Harte 2007).

Soil Erosion  

There’s an ethanol gold rush going on.  More than half the best farmland in the United States is leased by investors. Two-thirds or more of the farmland in the corn and soy growing states of Iowa, Minnesota, Illinois, and Indiana is rented (65, 74, 84, and 86% respectively).

Notice that these mostly investor-owned corn and soybean growing states, are mainly red in the map below.  Red represents the areas where farms have the highest erosion rates.

Corn and soy crops have higher erosion rates than most crops.  Storms and wind wash agrichemicals (sometimes highly toxic ones that haven’t had a chance to break down) and eroded soil into the air and water.  Sediment fills up reservoirs, shortening their life-span and the time dams can store water and generate electricity.  Yet the energy of the hydropower lost to siltation, energy to remediate flood damage, energy to dredge dams, agricultural drainage ditches, harbors, and navigation channels, aren’t considered in EROEI calculations.

Owners seeking short-term profits have far less incentive than farmers who work their land to preserve soil and water. They don’t adopt as long-term conservation measures as farm owner-operators do (ERS 1999).

http://www.ers.usda.gov/Briefing/ConservationAndEnvironment/Gallery/sediment.htm

Eutrophication.

The dark green areas of this map represent where the highest crop subsidy payments go and where the highest nitrogen runoff rates are. Notice that again, these areas correspond  with investor-owned farmland.  Commodity payments were meant to be a safety net, but the money ends up being used to buy and apply excess fertilizer, which gets into rivers, lakes, and oceans (Redlin 2007).

Farm runoff of nitrogen fertilizers has contributed to the pollution and hypoxia (low oxygen) of rivers and lakes across the country and the 8,000 square mile dead zone in the Gulf of Mexico.  Yet the cost of the lost shrimp and fisheries and increased cost of water treatment are not subtracted from the EROEI of ethanol.

Climate change also appears to be increasing runoff and erosion (SWCS 2003).

http://www.iwla.org/publications/agriculture/Farm_Bill_2007_WEB.pdf

Water Pollution

Soil erosion is a serious source of water pollution, since it causes runoff of sediments, nutrients, salts, eutrophication, and chemicals that have had no chance to decompose into streams. This increases water treatment costs, increases health costs, kills fish with insecticides that work their way up the food chain (Troeh 2005).

Ethanol plants pollute water.  They generate 13 liters of wastewater for every liter of ethanol produced (Pimentel March 2005)

Water depletion

Biofuel factories use a huge amount of water – four gallons for every gallon of ethanol produced.  Despite 30 inches of rain per year in Iowa, there may not be enough water for corn ethanol factories as well as people and industry. Drought years will make matters worse (Cruse 2006).

The facilities that produce ethanol require high-purity water, which is largely taken from confined aquifers, even in the rain-fed Midwest. Given the use of the water from the aquifers, there is clearly a certain amount of unsustainable pumping taking place, according to Jerald Schnoor.  In Iowa, for example, there are a large number of ethanol production plants, and the Cambrian- Ordovician aquifer, known as the Jordan aquifer, has been pumped down by 150 or 200 feet, so eventually future generations will not be able to use that aquifer (Institute of Medicine 2014).

Fifty percent of Americans rely on groundwater (Glennon 2002), and in many states, this groundwater is being depleted by agriculture faster than it is being recharged.  This is already threatening current food supplies (Giampetro 1997).  In some western irrigated corn acreage, groundwater is being mined at a rate 25% faster than the natural recharge of its aquifer (Pimentel 2003).

Biodiversity

To understand the earth’s overall capacity to produce bioenergy, it is useful to think in terms of its net primary productivity (NPP), which is “the amount of photosynthetic biomass available for exploitation by the biosphere.”  The earth’s NPP is staggeringly large—about 56 gigatonnes of carbon dioxide per year. It turns out that humans already use about 30% of NPP for food, fabrics, construction, and other uses. Any increase in the use of biofuels will require an increase in the amount of the earth’s NPP being appropriated for human use. And of course 100% of this NPP is already being used—if not by humans, then by various animals, fungi, bacteria, and other forms of life—so any increase in the human use of the NPP will take away from other ecosystem processes [and drive other species to extinction] (Institute of Medicine 2014).

Every acre of forest and wetland converted to crop land decreases soil biota, insect, bird, reptile, and mammal biodiversity.

Honeybees.  Springtime die-offs of honeybees from corn coated with insecticides was discovered in January 2012.  Bees are critical for pollinating food crops — these deaths are a part of the mysterious colony collapse disorder (Tapparo).

Part 4.   Biodiesel: Can we eat enough French Fries?

The idea we could run our economy on discarded fried food grease is very amusing.  For starters, you’d need to feed 7 million heavy diesel trucks getting less than 8 mpg. Seems like we’re all going to need to eat a lot more French Fries, but if anyone can pull it off, it would be Americans. Spin it as a patriotic duty and you’d see people out the door before the TV ad finished, the most popular government edict ever.

Scale. Where’s the Soy? Biodiesel is not ready for prime time.  Although John Deere is working on fuel additives and technologies to burn more than 5% accredited biodiesel  (made to ASTM D6751 specifications – vegetable oil does not qualify), that is a long way off. 52 billion gallons of diesel fuel are consumed a year in the United States, but only 75 million gallons of biodiesel were produced – two-tenths of one percent of what’s needed.  To get the country to the point where gasoline was mixed with 5 percent biodiesel would require 64 percent of the soybean crop and 71,875 square miles of land (Borgman 2007), an area the size of the state of Washington.  Soybeans cause even more erosion than corn.

But not to worry, a lot is being grown in Brazil, where the Amazon rainforest is being cut down to grow it.

Biodiesel shortens engine life. Currently, biodiesel concentrations higher than 5 percent can cause “water in the fuel due to storage problems, foreign material plugging filters…, fuel system seal and gasket failure, fuel gelling in cold weather, crankcase dilution, injection pump failure due to water ingestion, power loss, and, in some instances, can be detrimental to long engine life” (Borgman 2007).  Biodiesel also has a short shelf life and it’s hard to store – it easily absorbs moisture (water is a bane to combustion engines), oxidizes, and gets contaminated with microbes.  It increases engine NOx emissions (ozone) and has thermal degradation at high temperatures (John Deere 2006).

On the cusp of energy descent, we can’t even run the most vital aspect of our economy, agricultural machines, on “renewable” fuels.  John Deere tractors can run on no more than 5% accredited biodiesel (Borgman 2007).   Perhaps this is unintentionally wise – biofuels have yet to be proven viable, and mechanization may not be a great strategy in a world of declining energy

Part 5.  If we can’t drink and drive, then burn baby burn.

Energy Crop Combustion.

Wood is a crop, subject to the same issues as corn, and takes a lot longer to grow.  Burning wood in your stove at home delivers far more energy than the logs would if converted to biofuels (Pimentel 2005).  Wood was scarce in America when there were just 75 million people.  Electricity from biomass combustion is not economic or sustainable.

Combustion pollution is expensive to control.  Some biomass has absorbed heavy metals and other pollutants from sources like coal power plants, industry, and treated wood. Combustion can release chlorinated dioxins, benzofurans, polycyclic aromatic hydrocarbons, cadmium, mercury, arsenic, lead, nickel, and zinc.

Combustion contributes to global warming by adding nitrogen oxides and the carbon stored in plants back into the atmosphere, as well as removes agriculturally essential nitrogen and phosphate (Reijnders 2006)

EROEI in doubt. Combustion plants need to produce, transport, prepare, dry, burn, and control toxic emissions.  Collection is energy intensive, requiring some combination of bunchers, skidders, whole-tree choppers, or tub grinders, and then hauling it to the biomass plant.   There, the feedstock is chopped into similar sizes and placed on a conveyor belt to be fed to the plant.  If biomass is co-fired with coal, it needs to be reduced to ¼ inch or less, and the resulting fly ash may not be marketable to the concrete industry (Bain 2003).  Any alkali or chlorine released in combustion gets deposited on the equipment, reducing overall plant efficiencies, as well as accelerating corrosion and erosion of plant components, requiring high replacement and maintenance energy.

Processing materials with different physical properties is energy intensive, requiring sorting, handling, drying, and chopping.  It’s hard to optimize the pyrolysis, gasification, and combustion processes if different combustible fuels are used. Urban waste requires a lot of sorting, since it often has material that must be removed, such as rocks, concrete and metal.  The material that can be burned must also be sorted, since it varies from yard trimmings with high moisture content to chemically treated wood.

Biomass combustion competes with other industries that want this material for construction, mulch, compost, paper, and other profitable ventures, often driving the price of wood higher than a wood-burning biomass plant can afford. Much of the forest wood that could be burned is inaccessible due to a lack of roads.

Efficiency is lowered if material with a high water content is burned, like fresh wood. Different physical and chemical characteristics in fuel can lead to control problems (Badger 2002).   When wet fuel is burned, so much energy goes into vaporizing the water that very little energy emerges as heat, and drying takes time and energy.

Material is limited and expensive. California couldn’t use crop residues due to low bulk density. In 2000, the viability of California biomass enterprise was in serious doubt because the energy to produce biomass was so high due to the small facilities and high cost of collecting and transporting material to the plants (Bain 2003).

Part 6. The problems with Cellulosic Ethanol could drive you to drink.

Many plants want animals to eat their seed and fruit to disperse them.  Some seeds only germinate after going through an animal gut and coming out in ready-made fertilizer.   Seeds and fruits are easy to digest compared to the rest of the plant, that’s why all of the commercial ethanol and biodiesel are made from the yummy parts of plants, the grain, rather than the stalks, leaves, and roots.

But plants don’t want to be entirely devoured.  They’ve spent hundreds of millions of years perfecting structures that can’t easily be eaten.  Be thankful plants figured this out, or everything would be mown down to bedrock.

If we ever did figure out how to break down cellulose in our back yard stills, it wouldn’t be long before the 6.5 billion people on the planet destroyed the grasslands and forests of the world to power generators and motorbikes (Huber 2006)

Don Augenstein and John Benemann, who’ve been researching biofuels for over 30 years, are skeptical as well. According to them, “…severe barriers remain to ethanol from lignocellulose. The barriers look as daunting as they did 30 years ago”.

Benemann says the EROEI can be easily determined to be about five times as much energy required to make cellulosic ethanol than the energy contained in the ethanol.

The success of cellulosic ethanol depends on finding or engineering organisms that can tolerate extremely high concentrations of ethanol. Augenstein argues that this creature would already exist if it were possible. Organisms have had a billion years of optimization through evolution to develop a tolerance to high ethanol levels (Benemann 2006).  Someone making beer, wine, or moonshine would have already discovered this creature if it could exist.

The range of chemical and physical properties in biomass, even just corn stover (Ruth 2003, Sluiter 2000), is a challenge.  It’s hard to make cellulosic ethanol plants optimally efficient, because processes can’t be tuned to such wide feedstock variation..

Where will the Billion Tons of Biomass for Cellulosic Fuels Come From?

Not from Algae, that’s for sure.  There are dozens of reasons why algae will never be a source of biofuel.

Even if you uprooted every grass, shrub, crop, and tree in the United States for fuel, you’d get less energy than what we consume in just one year from fossil fuels and nuclear power (Patzek 2005)

The government believes there is a billion tons of biomass “waste” to make cellulosic biofuels, chemicals, and generate electricity with.

The United States lost 52 million acres of cropland between 1982 and 2002 (NCRS 2004).  At that rate, all of the cropland will be gone in 140 years.

There isn’t enough biomass to replace 30% of our petroleum use.  The potential biomass energy is miniscule compared to the fossil fuel energy we consume every year, about 105 exa joules (EJ) in the USA.  If you burned every living plant and its roots, you’d have 94 EJ of energy and we could all pretend we lived on Mars.  Most of this 94 EJ of biomass is already being used for food and feed crops, and wood for paper and homes. Sparse vegetation and the 30 EJ in root systems are economically unavailable – leaving only a small amount of biomass unspoken for (Patzek June 2006).

Over 25% of the “waste” biomass is expected to come from 280 million tons of corn stover. Stover is what’s left after the corn grain is harvested.  Another 120 million tons will come from soy and cereal straw (DOE Feedstock Roadmap, DOE Biomass Plan).

There isn’t enough no-till corn stover to harvest.  The success of biofuels depends on corn residues.  About 80% of farmers disk corn stover into the land after harvest. That renders it useless — the crop residue is buried in mud and decomposing rapidly.

Only the 20 percent of farmers who farm no-till will have stover to sell.  The DOE Billion Ton vision assumes all farmers are no-till, 75% of residues will be harvested, and fantasy corn and wheat yields 50% higher than now are reached (DOE Billion Ton Vision 2005).  But none of this corn stover should be harvested because corn loses more soil than any other crop grown (Pimentel 2007).

Many tons will never be available because farmers won’t sell any, or much of their residue (certainly not 75%). “Many predictions imagine that farmers will be willing to sell cellulosic biomass for the order of $40 or $50 a ton. Today, they can get $200 a ton for hay.” Given the difference, it is unlikely that many farmers will switch over from hay to cellulosic biomass (Institute of Medicine 2014)

Many more tons will be lost due to drought, rain, or loss in storage.

Only half a percent of a plant can be harvested sustainably every year.  Plants only fix a tiny part of solar energy into plant matter annually — about one-tenth to one-half of one percent new growth in temperate climates.

To prevent erosion, you could only harvest 51 million tons of corn and wheat residues, not 400 million tons (Nelson, 2002).  Other factors, like soil structure, soil compression, water depletion, and environmental damage weren’t considered. Fifty one million tons of residue could make about 3.8 billion gallons of ethanol, less than 1% of our energy needs.

Using corn stover is a  problem, because corn, soy, and other row crops cause 50 times more soil erosion than sod crops (Sullivan 2004) or more (Al-Kaisi 2000), and corn also uses more water, insecticides and fertilizers than most crops (Pimentel 2003)

The amount of soy and cereal straw (wheat, oats, etc) is insignificant.  It would be best to use cereal grain straw, because grains use far less water and cause far less erosion than row crops like corn and soybeans.  But that isn’t going to happen, because the green revolution fed billions more people by shortening grain height so that plant energy went into the edible seed, leaving little straw for biofuels.  Often 90% of soybean and cereal straw is grown no-till, but the amount of cereal straw is insignificant and the soybean residues must remain on the field to prevent erosion

Energy Crops

Energy crops are grown specifically for their fuel value.  Tall perennial grasses such as switchgrass and miscanthus are being proposed as potential energy crops.  Although grasses cause less erosion and need less fertilizer, they still suffer from the problems that all plants have:

  • Most non-food energy crops require as much water as corn, per unit weight (Pimentel 2007).  And they need a lot of water to be processed into a biofuel.  The Great Plains are the most likely place energy crops would be planted.  Yet the Ogallala aquifer is depleting fast and won’t replenish until after the next ice age.  Where’s the water to process tall grass prairies into biofuels going to come from?
  • Plants have low density compared to fossil fuels.  If you try to pelletize or compact them, that takes energy, and they’re still low density.   Hay bales are like mattresses – you can only get so many on a truck, and you can’t force them into a pipeline, which would be far less expensive.
  • The larger the biorefinery, the better the economies of scale.  Biofuels need to be created at a large scale for any hope of a positive energy balance and enough purity to be used in combustion engines, which are extremely fine-tuned for diesel or gasoline, fuel injection, etc.
  • Plants aren’t concentrated – they grow diffusely and require a great deal of energy to harvest and deliver to the refinery.
  • Plants are hard to store. They rot and turn into mulch or can catch on fire. Storing them wet adds weight, leading to higher transportation costs and high water use.
  • All plants succumb to pests and disease.  Miscanthus is from China, but eventually pests will evolve to dine upon it, especially if grown in monocrops.

Poor, erodible land. There aren’t enough acres of land to grow significant amounts of energy crops.  Potential energy crop land is usually poor quality or highly erodible land that shouldn’t be harvested.  Farmers are often paid not to farm this unproductive land.  Many acres in switchgrass are being used for wildlife and recreation.

Few suitable bio-factory sites. Biorefineries can’t be built just anywhere – very few sites could be found to build switchgrass plants in all of South Dakota (Wu 1998).  Much of the state didn’t have enough water or adequate drainage to build an ethanol factory.  The sites had to be on main roads, near railroad and natural gas lines, out of floodplains, on parcels of at least 40 acres to provide storage for the residues, have electric power, and enough biomass nearby to supply the plant year round.

No energy crop farmers or investors. Farmers won’t grow switchgrass until there’s a switchgrass plant. Machines to harvest and transport switchgrass efficiently don’t exist yet (Barrionuevo 2006). The capital to build switchgrass plants won’t materialize until there are switchgrass farmers.   Since “ethanol production using switchgrass required 50% more fossil energy than the ethanol fuel produced” (Pimentel 2005), investors for these plants will be hard to find.

Energy crops are subject to Liebig’s law of the minimum too. Switchgrass may grow on marginal land, but it hasn’t escaped the need for minerals and water.  Studies have shown the more rainfall, the more switchgrass you get, and if you remove switchgrass, you’re going to need to fertilize the land to replace the lost biomass, or you’ll get continually lower yields of switchgrass every time you harvest the crop (Vogel 2002).

Bioinvasive Potential. These fast-growing disease-resistant plants are potentially bioinvasive, another kudzu.   Bioinvasion costs our country billions of dollars a year (Bright, 1998).  Johnson grass was introduced as a forage grass and it’s now an invasive weed in many states.  Another fast-growing grass, Miscanthus, from China, is now being proposed as a biofuel.  It’s been described as “Johnson grass on steroids” (Raghu 2006). These foreign grasses do quite well because they don’t have any pests, yet.

Sugar cane: too little to import.  Brazil uses oil for 90% of their energy, and 17 times less oil (Jordan 2006). Brazilian ethanol production in 2003 was 3.3 billion gallons, about the same as the USA in 2004, or 1% of our transportation energy.  Brazil uses 85% of their cane ethanol, leaving only 15% for export.

Sugar Cane: can’t grow it here. Although we grow some sugar cane despite tremendous environmental damage (WWF) in Florida thanks to the sugar lobby, we’re too far north to grow a significant amount of sugar cane or other fast growing C4 plants.

Sugar cane has been touted as an “all you need is sunshine” plant.  But according to the FAO, the nitrogen, phosphate, and potassium requirements of sugar cane are roughly similar to maize (FAO 2004).

Wood ethanol is an energy sink.  Ethanol production using wood biomass required 57% more fossil energy than the ethanol fuel produced (Pimentel 2005).

Wood is a nonrenewable resource.  Old-growth forests had very dense wood, with a high energy content, but wood from fast-growing plantations is so low-density and low calorie it’s not even good to burn in a fireplace.  These plantations require energy to plant, fertilize, weed, thin, cut, and deliver.  The trees are finally available for use after 20 to 90 years – too long for them to be considered a renewable fuel (Odum 1996). Nor do secondary forests always come back with the vigor of the preceding forest due to soil erosion, soil nutrition depletion, and mycorrhizae destruction (Luoma 1999).

There’s not enough wood to fuel a civilization of 300 million people. Over half of North America was deforested by 1900, at a time when there were only 75 million people (Williams 2003). Most of this was from home use. In the 18th century the average Northeastern family used 10 to 20 cords per year. At least one acre of woods is required to sustainably harvest one cord of wood (Whitney 1994).

Energy crop limits. Energy crops may not be sustainable due to water, fertilizer, and harvesting impacts on the soil (DOE Biomass Roadmap 2005). Like all other monoculture crops, ultimately yields of energy crops will be reduced due to “pest problems, diseases, and soil degradation” (Giampetro, 1997).

Energy crop monoculture.   Thephysical and chemical characteristics of feedstocks vary by source, by year, and by season, increasing processing costs” (DOE Feedstock Roadmap).  That will encourage the development of genetically engineered biomass to minimize variation.  Harvesting economies of scale will mean these crops will be grown in monoculture, just as food crops are.  That’s the wrong direction – to farm with less energy there’ll need to be a return to rotation of diverse crops, and composted residues for soil nutrition, pest, and disease resistance.

A way around this would be to spend more on researching how cellulose digesting microbes tackle different herbaceous and woody biomass.  The ideal energy crop would be a perennial, tall-grass prairie / herbivore ecosystem (Tilman 2006).  Tilman recommends harvesting “all grassland in the U.S. for ethanol but neglects to report that 100 million cattle, 7 million sheep, and 4 million horses are currently grazing on this grass!” (Pimentel 2007)

Farmers aren’t Stupid: They won’t sell their residues

Farmers are some of the smartest people on earth or they’d soon go out of business.  They have to know everything from soil science to commodity futures.

Crop production is reduced when residues are removed from the soil.  Why would farmers want to sell their residues?    

Erosion, water, compression, nutrition. Harvesting of stover on the scale needed to fuel a cellulosic industry won’t happen because farmers aren’t stupid, especially the ones who work their own land.  Although there is a wide range of opinion about the amount of residue that can be harvested safely without causing erosion, loss of soil nutrition, and soil structure, many farmers will want to be on the safe side, and stick with the studies showing that 20% (Nelson, 2002) to 30% (McAloon et al., 2000; Sheehan, 2003) at most can be harvested, not the 75% agribusiness claims is possible.  Farmers also care about water quality (Lal 1998, Mann et al, 2002).  And farmers will decide that permanent soil compression is not worth any price (Wilhelm 2004).  As prices of fertilizer inexorably rise due to natural gas depletion, it will be cheaper to return residues to the soil than to buy fertilizer.

Residues are a headache.  The further the farmer is from the biorefinery or railroad, the slimmer the profit, and the less likely a farmer will want the extra headache and cost of hiring and scheduling many different harvesting, collection, baling, and transportation contractors for corn stover.

Residues are used by other industries. Farm managers working for distant owners are more likely to sell crop residues since they’re paid to generate profits, not preserve land.  But even they will sell to the highest bidder, which might be the livestock or dairy industries, furfural factories, hydromulching companies, biocomposite manufacturers, pulp mills, or city dwellers faced with skyrocketing utility bills, since the high heating value of residue has twice the energy of the converted ethanol.

Investors aren’t stupid either. If farmers can’t supply enough crop residues to fuel the large biorefinery in their region, who will put up the capital to build one?

Can the biomass be harvested, baled, stored, and transported economically?

Plants are closer to cotton candy than rocks. The oil to harvest, bale, deliver, clean, and store these straw pillows is likely to use more energy than the cellulosic fuels created.

Harvesting.  Sixteen ton tractors harvest corn and spit out stover.  Many of these harvesters are contracted and will continue to collect corn in the limited harvest time, not stover.  If tractors are still available, the land isn’t wet, snow doesn’t fall, and the stover is dry, three additional tractor runs will mow, rake, and bale the stover (Wilhelm 2004).  This will triple the compaction damage to the soil (Troeh 2005), create more erosion-prone tire tracks, increase CO2 emissions, add to labor costs, and put unwanted foreign matter into the bale (soil, rocks, baling wire, etc).

So biomass roadmaps call for a new type of tractor or attachment to harvest both corn and stover in one pass.  But then the tractor would need to be much larger and heavier, which could cause decades-long or even permanent soil compaction.  Farmers worry that mixing corn and stover might harm the quality of the grain.  And on the cusp of energy descent, is it a good idea to build an even larger and more complex machine?

If the stover is harvested, the soil is now vulnerable to erosion if it rains, because there’s no vegetation to protect the soil from the impact of falling raindrops.  Rain also compacts the surface of the soil so that less water can enter, forcing more to run off, increasing erosion. Water landing on dense vegetation soaks into the soil, increasing plant growth and recharging underground aquifers.  The more stover left on the land, the better.

Baling. The current technology to harvest residues is to put them into bales of hay. Hay is a dangerous commodity — it can spontaneously combust, and once on fire, can’t be extinguished, leading to fire loss and increased fire insurance costs.  Somehow the bales have to be kept from combusting during the several months it takes to dry them from 50 to 15 percent moisture.  A large, well drained, covered area is needed to vent fumes and dissipate heat. If the bales get wet they will compost (Atchison 2004).

Baling was developed for hay and has been adapted to corn stover with limited success.  Biorefineries need at least half a million tons of biomass on hand to smooth supply bumps, much greater than any bale system has been designed for.  Pelletization is not an option, it’s too expensive.  Other options need to be found. (DOE Feedstock Roadmap)

To get around the problems of exploding hay bales, wet stover could be collected. The moisture content needs to be around 60 percent, which means a lot of water will be transported, adding significantly to the delivery cost.

Storage. Stover needs to be stored with a moisture content of 15% or less, but it’s typically 35-50%, and rain or snow during harvest will raise these levels even higher (DOE Feedstock Roadmap).  If it’s harvested wet anyhow, there’ll be high or complete losses of biomass in storage (Atchison 2004).

After catastrophic fires, the pulp industry learned to only use wet feedstock.  If residues are stored wet, as in ensilage, a great deal of R&D will be needed to see if there are disease, pest, emission, runoff, groundwater contamination, dust, mold, or odor control problems.  The amount of water required is unknown. The transit time must be short, or aerobic microbial activity will damage it.  At the storage site, the wet biomass must be immediately washed, shredded, and transported to a drainage pad under a roof for storage, instead of baled when drier and left at the farm.  The wet residues are heavy, making transportation costlier than for dry residues, perhaps uneconomical. It can freeze in the winter making it hard to handle.  If the moisture is too low, air gets in, making aerobic fermentation possible, resulting in molds and spoilage.

Delivery.

Ethanol can’t be delivered in the most efficient, least costly way: by pipeline, because of the presence of water in pipelines (which would ruin any combustion engine that tried to burn it).  It takes an enormous amount of energy to deliver midwestern ethanol to the East and West coast by train and truck.  Although biobutanol could be put into pipelines, it does not provide the same octane enhancement of ethanol.  If you tried to work around all the difficulties of various biofuels by giving each one its own transportation infrastructures, that would become a constraint in and of itself.

That’s why biorefineries must exist in an area of dense roads. Railroad delivery is ideal, but 40% of train cars are carrying coal on many routes, and other just-in-time products, or produce that might spoil if the train stopped and started often enough to pick up biomass (it’s expensive energy-wide to stop and start trains). The outer distance for truck delivery can’t be too far or the oil used makes it uneconomic.

Although a 6,000 dry ton per day biorefinery would have 33% lower costs than a 2,000 ton factory, it’s impossible to build biorefineries to optimal scale, because the price of gas and diesel limits the distance trucks can haul biomass to the biofuel refinery from farms, since the bales are large in volume but low in density.

So the “economy of scale” achieved by a very large refinery has to be reduced to a 2,000 dry ton per day biorefinery.   Even this smaller refinery would require 200 trucks per hour delivering biomass during harvest season (7 x 24), or 100 trucks per day if satellite sites for storage are used.  This plant would need 90% of the no-till crop residues from the surrounding 7,000 square miles with half the farmers participating.  Yet less than 20% of farmers practice no-till corn and not all of the farmland is planted in corn. When this biomass is delivered to the biorefinery, it will take up at least 100 acres of land stacked 25 feet high.

The average stover haul to the biorefinery would be 43 miles one way if these rosy assumptions all came true (Perlack 2002).   If less than 30% of the stover is available, the average one-way trip becomes 100 miles and the biorefinery is economically impossible.

There is also a shortage of truck drivers, the rail system can’t handle any new capacity, and trains are designed to operate between hubs, not intermodally (truck to train to truck). The existing transportation system has not changed much in 30 years, yet this congested, inadequate infrastructure somehow has to be used to transport huge amounts of ethanol, biomass, and byproducts (Haney 2006).

In Summary: Plants are Hard to Make into Fuels

  • Not enough water for people, industry, and biofuel refineries now. By 2100, the U.S. Census projects potentially 1.1 billion people in the United States.
  • Plants have low density. They’re like big mattresses when you bunch them up into bales.  If you try to compact them further by turning them into pellets, it takes so much energy that you’re entering negative energy land.
  • Truck transportation is expensive compared to pipelines. You can’t stuff plant mattresses into a pipe – you have to load them onto oil-burning trucks, nor can you load them up with as many as you’d like, because they take up a lot of space.
  • Plants grow diffusely across the landscape — a biorefinery needs plants delivered from the surrounding 7,000 or more square miles for a 2,000 ton/day refinery.
  • Every processing step takes energy. Plants must be planted, harvested, delivered, stored, milled, liquefied, heated, saccharified, fermented, evaporated, centrifuged, distilled, scrubbed, dried, stored, and transported to customers.
  • Biorefineries need to be enormous for economies of scale –100 acres of hay stacked 25 feet high.
  •  You can’t do this at home – biofuels need to be pure or combustion engine life may be shortened, and used within 3 months before microbes chew them up.   Some of the gasohol made in the 1980′s had so much water in it that gasohol got a bad name, that’s why it’s called ethanol in it’s new reincarnation.
  • Plants are hard to store. They rot and turn into mulch or can catch on fire.  If stored wet, that adds to transportation costs and water use at the storage site.

As a systems architect and engineer, I looked at projects from start to end, trying to identify the failure points.   The Department of Energy Biomass Roadmaps and the Energy Biosciences Institute Proposal have taken a similar approach and identified the barriers to cellulosic fuels.

All of the steps from A to Z must succeed or a project fails.  Just solving the cellulosic issues within the biorefinery won’t do any good if the other steps fail.  There are major challenges in harvesting, storing, transporting biomass, and delivering cellulosic fuels to customers.

In business you’re limited by money, in science, you’re limited by the laws of physics and thermodynamics.

When it comes to biofuels, you’re also limited by ecosystems.  To grow plants sustainably, the soil ecosystem and water supply need to be taken into account.

The government and business entities don’t appear to be looking at the entire process from start to end, or there’d be no government subsidies to the ethanol industry or investment in commercial-level ethanol plants. If prices are compared on the basis of energy content, ethanol has been consistently more expensive than gasoline because a gallon of ethanol has less energy than a gallon of petroleum-based gasoline. Thus, ethanol producers are making little money even though their biofuel is more expensive than gasoline in terms of energy supplied per gallon.

Cellulosic Biorefineries (see Appendix for more barriers)

Synthetic biologists are trying to make oil rather than ethanol for many reasons. There are billions of combustion engines that can only burn oil, which is free concentrated sunshine brewed by Mother Nature over hundreds of millions of years. Only uranium packs more punch per unit weight. The 98 tons of fossil plants per gallon is equal to 40 acres of wheat.

Oil is easily poured, stored, and transported, combusts without problems rather than exploding. Basically, if you were trying to create an ideal energy, you’d invent oil.

But with every step required to transform a substance into energy, there is less energy yield.  If a microbe can be created which digests cellulose and excretes oil, the number of steps can be reduced.

But plants have evolved for millions of years to prevent themselves from being eaten. It will be hard to pull off.  In termites, multiple microbe species are involved in breaking down lignocellulose, each consumes the wastes of others, which are toxic to the creature generating them.  Keeping predators out of the vats, getting rid of contaminants, replicating enzymes and too many other issues to list make it unlikely cellulosic fuels can be made in the near future with a positive net energy.

There are over 60 barriers to be overcome in making cellulosic ethanol in Section III of the DOE “Roadmap for Agriculture Biomass Feedstock Supply in the United States” (DOE Feedstock Roadmap 2003).  For example:

Jerald Schnoor, professor of civil and environmental engineering at the University of Iowa, said that “The enzymes [to create cellulosic ethanol cost] $1 per gallon, and we’re trying to produce the fuel for $1.50 per gallon, so we’re quite far away from a commercial cellulosic biofuel.” Furthermore, Schnoor noted, if the mandated production for cellulosic biofuels was to be met by 2015 and 2020 and 2022, the plants would have to be built now—and they are not. “So, it’s virtually assured that there’s no way we’re going to [produce] 16 billion gallons of cellulosic biofuels [especially considering that] we’re only producing 25,000 gallons currently” (Institute of Medicine 2014).

Enzyme Biochemistry. Enzymes that exhibit high thermostability and substantial resistance to sugar end-product inhibition will be essential to fully realize enzyme-based sugar platform technology. The ability to develop such enzymes and consequently very low cost enzymatic hydrolysis technology requires increasing our understanding of the fundamental mechanisms underlying the biochemistry of enzymatic cellulose hydrolysis, including the impact of biomass structure on enzymatic cellulose decrystallization. Additional efforts aimed at understanding the role of cellulases and their interaction not only with cellulose but also the process environment is needed to affect further reductions in cellulase cost through improved production”.

No wonder many of the issues with cellulosic biofuels aren’t discussed – there’s no way to express the problems in a sound bite.

It may not be possible to reduce the complex cellulose digesting strategies of bacteria and fungi into microorganisms or enzymes that can convert cellulose into fuel in giant steel vats, especially given the huge physical and chemical variations in feedstock. The field of metagenomics is trying to create a chimera from snips of genetic material of cellulose-digesting bacteria and fungi.  That would be the ultimate Swiss Army-knife microbe, able to convert cellulose to sugar and then sugar to ethanol or oil (i.e. butanol).

There’s also research to replicate termite gut cellulose breakdown. Termites depend on fascinating creatures called protists in their guts to digest wood.  The protists in turn outsource the work to multiple kinds of bacteria living inside of them. This is done with energy (ATP) and architecture (membranes) in a system that evolved over millions of years.  If the termite could fire the protists and work directly with the bacteria, that probably would have happened 50 million years ago. This process involves many kinds of bacteria, waste products, and other complexities that may not be reducible to an enzyme or a bacteria.

Jay Keasling, Director of Physical Biosciences at LBNL, proposes to do the above in a synthetic biology factory.  You’d order up the biological bits you need to create a microbial machine the way electronics parts are obtained at Fry’s electronics stores. At U.C. Berkeley on April 21, 2007, he said this could also be used to get past the 15% concentration of ethanol that pickles micro-organisms, which results in a tremendous amount of energy being used to get the remaining 85% of water out.  Or you could use this technology to create a creature that could convert miscanthus and switchgrass to create biofuels that can be put in pipelines and burned in diesel engines (Singer 2007).

Biologists roll their eyes when reductionist physicists pat them on the head and tell little ol’ biology not to worry, living organisms can be reduced to atoms and enzymes, just  take a piece of algae here, a bit of fungi or bacteria there and voila – a new creature that produces vast volumes of biofuels quickly.   But biology is a messy wonderment. Creatures exist within food webs and don’t reproduce well if surrounded by their own toxic wastes.  The research is well worth doing, but public policy shouldn’t assume synthetic biology is a “slam dunk”.

But meanwhile we’re stuck with corn and ethanol, which in the end must be delivered to the customer. Since ethanol can’t be delivered cheaply through pipelines, but must be transported by truck, rail, or barge (Yacobucci 2003), this is very expensive for the coastal regions.  Alaska and Hawaii have managed to get out of having to add ethanol to gasoline, but California’s Senator Feinstein has not been able to do the same.

The whole cellulosic ethanol enterprise falls apart if the energy returned is less than the energy invested or even one of the major stumbling blocks can’t be overcome. If there isn’t enough biomass, if the residues can’t be stored without exploding or composting, if the oil to transport low-density residues to biorefineries or deliver the final product is too great, if no cheap enzymes or microbes are found to break down lignocellulose in wildly varying feedstocks, if the energy to clean up toxic byproducts is too expensive, or if organisms capable of tolerating high ethanol concentrations aren’t found, if the barriers in Appendix A can’t be overcome, then cellulosic fuels are not going to happen.

If the obstacles can be overcome, but we lose topsoil, deplete aquifers, poison the land, air, and water, what kind of Pyrrhic victory is that?

Scientists have been trying to solve these issues for over thirty years now.

Nevertheless, this is worthy of research money, but not public funds for commercial refineries until the issues above have been solved.  This is the best hope we have for replacing the half million products made from and with fossil fuels, and for liquid transportation fuels when population falls to pre-coal levels.

Part 7.  Where do we go from here?

Subsidies and Politics: Now, and for the Foreseeable Future, Ethanol Will Only be Made from Corn

Biofuels from biodiverse, tall grass prairie are far preferable to ethanol from corn and soy, but there are no commercial level cellulosic biorefineries – and we are a long way from being able to deliver cellulosic fuels to customers.  Even if all of the barriers to cellulosic fuels could be achieved before oil shocks hit, they’d bankrupt our soils so quickly that there’d be no biomass to feed the maws of the biorefineries.

How come there are over 116 ethanol plants with 79 under construction and 200 more planned?  Government subsidies and tax breaks.

Federal and state ethanol subsidies add up to 79 cents per liter (McCain 2003), with most of that going to agribusiness, not farmers. There is also a tax break of 5.3 cents per gallon for ethanol (Wall Street Journal 2002). An additional 51 cents per gallon goes mainly to the oil industry to get them to blend ethanol with gasoline.

In addition to the $8.4 billion per year subsidies for corn and ethanol production, the consumer pays an additional amount for any product with corn in it (Pollan 20005), beef, milk, and eggs, because corn diverted to ethanol raises the price of corn for the livestock industry.

California Senator Feinstein calls ethanol a transfer of wealth to the Midwest, where 99% of ethanol is made. She points out it can’t be shipped through gasoline pipelines, only by truck, boat, or rail, which is extremely expensive to transport from the Midwest to California. She notes that any shortfall in supply or manipulation could drive prices even higher (Feinstein 2003, Washington Post 2002).

Coming to a theater near you:  Enron Part 2.

The subsidies may never end, because Iowa plays a leading role in who’s selected to be the next president. John McCain has backed off on his criticism of ethanol now that he’s running for president (Birger 2006).

“Once we have a corn-based technology up and running the political system will protect it,” said Lawrence J. Goldstein, a board member at the Energy Policy Research Foundation. “We cannot afford to have 15 billion gallons of corn-based ethanol in 2015, and that’s exactly where we are headed” (Barrionuevo 2007).

Let’s stop the ethanol subsidies and see if this elephant can fly on its own.

Conclusion

President Carter asked us to put our sweaters on, and had plans for a soft landing, but Americans chose Reagans’ “Morning in America” and having our military do whatever was necessary to maintain the “non-negotiable” American way of life.  Now we’re in for a much harder landing.

Soil is the bedrock of civilization (Perlin 1991, Ponting 1993).  Biofuels are not sustainable or renewable. Why would we destroy our topsoil, increase global warming, deplete and pollute groundwater, destroy fisheries, and use more energy than what’s gained to make ethanol?  Why would we do this to our children and grandchildren?

Perhaps it’s a combination of pork barrel politics, an uninformed public, short-sighted greedy agribusiness corporations, jobs for the Midwest, politicians getting too large a percent of their campaign money from agribusiness (Lavelle 2007), elected leaders without science degrees, and desperation to provide liquid transportation fuels (Bucknell 1981, Hirsch 2005).

But this madness puts our national security at risk.  Destruction of topsoil and collateral damage to water, fisheries, and food production will result in less food to eat or sell for petroleum and natural gas imports.   Diversion of precious dwindling energy and money to impossible solutions is a threat to our nations’ future.   In an oil-less future, prime farm land is a nation’s number one resource.

We are upset at mountain tops being blasted off to produce coal, and the damage done by mining for metal, yet mining footprints pale in comparison with the hundreds of millions of acres being mined to grow food.  Regardless of the energy crisis, agriculture needs reforming.

Let’s use the limited energy we have left to fix what’s wrong with agriculture.

Fix the unsustainable and destructive aspects of industrial agriculture. At least some good would come out of the ethanol fiasco if more attention were paid to how we grow our food.  The effects of soil erosion on crop production have been hidden by mechanization and intensive use of fossil fuel fertilizers and chemicals on crops bred to tolerate them.  As energy declines, crop yields will decline as well.

States can play an important role. California is putting the brakes on coal with Global Warming bill AB32.  This bill should also try to force needed agricultural reforms by buying only sustainable biofuels from biodiverse grassland crops to protect our soils and water, plus put more carbon into the ground.

Jobs.  Since part of what’s driving the ethanol insanity is job creation, divert the subsidies and pork barrel money to erosion control and sustainable agriculture.  Maybe Iowa will emerge from its makeover looking like Provence, France, and volunteers won’t be needed to hand out free coffee at rest areas along I-80.

Continue to fund cellulosic ethanol research, focusing on how to make 500,000 fossil-fuel-based products (i.e. medicine, chemicals, plastics, etc) and fuel for when population declines to pre-fossil fuel carrying capacity.  The feedstock should be from a perennial, tall-grass prairie herbivore ecosystem, not food crops. But don’t waste taxpayer money to build demonstration or commercial plants until most of the research and sustainability barriers have been solved.

Take away the E85 loophole that allows Detroit automakers to ignore CAFE standards and get away with selling even more gas guzzling vehicles (Consumer Reports 2006).   Raise the CAFE standards higher immediately.  Pass laws to favor low-emission vehicle sales and require all new cars to have energy efficient tires.

There are better, easier ways to stretch out petroleum than adding ethanol to it. Just keeping tires inflated properly would save more energy than all the ethanol produced today.  Reducing the maximum speed limit to 55, consumer driving tips, truck stop electrification, and many other measures can save far more fuel in a shorter time than biofuels ever will, far less destructively.  Better yet, Americans can bike or walk, which will save energy used in the health care system.

Reform our non-sustainable agricultural system

  • Give integrated pest management and organic agriculture research more funding
  • The National Resources Conservation Service (NCRS) and other conservation agencies have done a superb job of lowering the erosion rate since the dustbowl of the 1930’s.  Give these agencies a larger budget to further the effort.
  • We need to make sure that the budget given to the Natural Resources Conservation Service in the 2007 Farm Bill isn’t diverted to corn and ethanol subsidies.  The farm bill should have a much larger budget for conservation of land and water.
  • To promote land stewardship, change taxes and zoning laws to favor small family farms.  This will make possible the “social, economic, and environmental diversity necessary for agricultural and ecosystem stability” (Opie 2000).
  • Make the land grant universities follow the directive of the Hatch Act of 1887 to improve the lives of family farmers. Stop funding agricultural mechanization and petrochemical research and start funding how to fight pests and disease with diverse crops, crop rotations, and so on (Hightower 1978).
  • Don’t allow construction of homes and businesses on crop land.
  • Integrate livestock into the crop rotation.
  • Teach family farmers and suburban homeowners how to maximize food production in limited space with Rodale and Biointensive techniques.
  • Since less than 1 percent of our elected leaders and their staff have scientific backgrounds, educate them in systems ecology, population ecology, soil, and climate science.  So many of the important issues that face us need scientific understanding and judgment.
  • Divert funding from new airports, roads, and other future senseless infrastructure towards research in solar, wind, and cellulosic products. We’re at the peak of scientific knowledge and our economic system hasn’t been knocked flat yet by energy shortages – if we don’t do the research now, it may never happen.
  •  And vote with your fork – buy local, organic food.
  • Above all, we need to elect leaders who understand the gravity of the situation and have planned for what to do when oil shocks hit.

There are many institutions and people who have been working on these issues for decades. What we need is a grass roots movement to enact reforms while we still have plentiful energy.

It’s not unreasonable to expect farmers to conserve the soil, since the fate of civilization lies in their hands.  But we need to pay farmers for far more than the cost of growing food so they can afford to conserve the land.  In an oil-less future, healthy topsoil will be our most important resource.

If we do nothing, dustbowls will return.   Erosion and other ecological damage is insidious, it doesn’t happen overnight. We should try to manage our soils to last at least two thousand years. There’s no excuse not to – we know how to do this.

Responsible politicians need to tell Americans why their love affair with the car can’t continue.  Leaders need to make the public understand that there are limits to growth, and an increasing population leads to the “Tragedy of the Commons”.  Even if it means they won’t be re-elected.  Arguing this amidst the church of development that prevails is like walking into a Bible-belt church and telling the congregation God doesn’t exist, but it must be done.

We are betting the farm on making cellulosic fuels work at a time when our energy and financial resources are diminishing.  No matter how desperately we want to believe that human ingenuity will invent liquid or combustible fuels despite the laws of thermodynamics and how ecological systems actually work, the possibility of failure needs to be contemplated.

Living in the moment might be enlightenment for individuals, but for a nation, it’s disastrous. Is there a Plan B if biofuels don’t work?  Coal is not an option.  CO2 levels over 1,000 ppm could lead to the extinction of 95% of life on the planet (Lynas 2007, Ward 2006, Benton 2003).

Here we are, on the cusp of energy descent, with mechanized petrochemical farms.  We import more farm products now than we sell abroad (Rohter 2004). Suburban sprawl destroys millions of acres of prime farm land as population grows every year.  We’ve gone from 7 million family farms to 2 million much larger farms and destroyed a deeply satisfying rural way of life.

More people will need to go back to the land during energy descent, so let’s start now, and encourage small family farms.

There need to be plans for de-mechanization of the farm economy if liquid fuels aren’t found.  There are less than four million horses, donkeys, and mules in America today.  According to Bucknell, if the farm economy were de-mechanized, you’d need at least 31 million farm workers and 61 million horses (Bucknell 1981).

We need to start on “Plan B” now in case biofuels aren’t invented before oil shocks strike.  We don’t want to experience the same discontinuities as Cuba (Oxfam 2001) and North Korea (Williams 2000) did.

The population of the United States has grown over 25 percent since Bucknell published Energy and the National Defense.  To de-mechanize now, we’d need 39 million farm workers and 76 million horses. The horsepower represented by just farm tractors alone is equal to 400 million horses.  It’s time to start increasing horse and oxen numbers, which will leave even less biomass for biorefineries.

If we wait, the consequences will be Stalinesque.  You can’t just do this overnight, and with the ownership of land concentrated in so few hands, you’re automatically heading towards feudalism rather than the Jeffersonian ideal our nation was founded on.

We need to transition from petroleum power to muscle power gracefully if we want to preserve democracy.   Paul Roberts wonders whether the coming change will be “peaceful and orderly or chaotic and violent because we waited too long to begin planning for it” (Roberts 2004).

We’re facing Peak Oil, Peak Natural Gas, Peak Coal, and climate change.  As we go down the energy ladder and go up the thermometer, what is the likely carrying capacity of the United States?   Is it 100 million (Pimentel 1991) or 250 million (Smil 2000)?  Whatever carrying capacity is decided upon, pass legislation to drastically lower immigration and encourage one child families until America reaches this number.  Or we can let resource wars, hunger, disease, extreme weather, rising oceans, and social chaos legislate the outcome.

Do you want to eat or drive? Even without growing food for biofuels, crop production per capita is going to go down as population keeps increasing, fossil fuel energy decreases, topsoil loss continues, and aquifers deplete, especially the Ogallala (Opie 2000).  Where will the money come from to buy imported oil and natural gas if we don’t have food to export?

There is no such thing as “waste” biomass.  As we go down the energy ladder, plants will increasingly be needed to stabilize climate, provide food, medicine, shelter, furniture, heat, light, cooking fuel, clothing, etc.

Biofuels are a threat to the long-term national security of our nation.  Is Dr. Strangelove in charge, with a plan to solve defense worries by creating a country that’s such a salty polluted desert, no one would want to invade us?  Why is Dr. Strangelove spending the last bits of energy in Uncle Sam’s pocket on moonshine?   Perhaps he’s thinking that we’re all going to need it, and the way things are going, he’s probably right.

Appendix

Department of Energy Biofuel Roadmap Barriers

This is a partial summary of biofuel barriers from Department of Energy. Unless otherwise footnoted, the problems with biomass fuel production are from the Multi Year Program Plan DOE Biomass Plan or Roadmap for Agriculture Biomass Feedstock Supply in the United States. (DOE Biomass Plan, DOE Feedstock Roadmap).

Resource and Sustainability Barriers

1)      Biomass feedstock will ultimately be limited by finite amounts of land and water

2)      Biomass production may not be sustainable because of impacts on soil compaction, erosion, carbon, and nutrition.

3)      Nor is it clear that perennial energy crops are sustainable, since not enough is known about their water and fertilizer needs, harvesting impacts on the soil, etc.

4)      Farmers are concerned about the long-term effects on soil, crop productivity, and the return on investment when collecting residues.

5)      The effects of biomass feedstock production on water flows and water quality are unknown

6)      The risks of impact on biodiversity and public lands haven’t been assessed.

 

Economic Barriers (or Investors Aren’t Stupid)

1)      Biomass can’t compete economically with fossil fuels in transportation, chemicals, or electrical generation.

2)      There aren’t any credible data on price, location, quality and quantity of biomass.

3)      Genetically-modified energy crops worry investors because they may create risks to native populations of related species and affect the value of the grain.

4)      Biomass is inherently more expensive than fossil fuel refineries because

a)      Biomass is of such low density that it can’t be transported over large distances economically.  Yet analysis has shown that biorefineries need to be large to be economically attractive – it will be difficult to find enough biomass close to the refinery to be delivered economically.

b)      Biomass feedstock amounts are unpredictable since unknown quantities will be lost to extreme weather, sold to non-biofuel businesses, rot or combust in storage, or by used by farmers to improve their soil.

c)      Ethanol can’t be delivered in pipelines due to likely water contamination.  Delivery by truck, barge, and rail is more expensive.  Ethanol is a hazardous commodity which adds to its transportation cost and handling.

d)      Biomass varies so widely in physical and chemical composition, size, shape, moisture levels, and density that it’s difficult and expensive to supply, store, and process.

e)      The capital and operating costs are high to bale, stack, palletize, and transport residues

f)        Biomass is more geographically dispersed, and in much more ecologically sensitive areas than fossil resources.

g)      The synthesis gas produced has potentially higher levels of tars and particulates than fossil fuels.

h)      Biomass plants can’t benefit from the same large-scale cost savings of oil refineries because biomass is too dispersed and of low density.

5)      Consumers won’t buy ethanol because it costs more than gasoline and contains 34% less energy per gallon. Consumer reports wrote they got the lowest fuel mileage in recent years from ethanol due to its low energy content compared to gasoline, effectively making ethanol $3.99 per gallon.  Worse yet, automakers are getting fuel-economy credits for every E85 burning vehicle they sell, which lowers the overall mileage of auto fleets, which increases the amount of oil used and lessens energy independence.  (Consumer Reports)

Equipment and Storage Barriers

1)      There are no harvesting machines to harvest the wide range of residue from different crops, or to selectively harvest components of corn stover.

2)      Current biomass harvesting and collection methods can’t handle the many millions of tons of biomass that need to be collected.

3)      How to store huge amounts of dry biomass hasn’t been figured out.

4)      No one knows how to store and handle vast quantities of different kinds of wet biomass.  You can lose it all since it’s prone to spoiling, rotting, and spontaneous combustion

Preprocessing Barriers

1)      We don’t even know what the optimum properties of biomass to produce biofuels are, let alone have instruments to measure these unknown qualities.

2)      Incoming biomass has impurities that have to be gotten out before grinding, compacting, and blending, or you may damage equipment and foul chemical and biological processes downstream.

3)      Harvest season for crops can be so short that it will be difficult to find the time to harvest cellulosic biomass and pre-process and store a year of feedstock stably.

4)      Cellulosic biomass needs to be pretreated so that it’s easier for enzymes to break down.  Biomass has evolved for hundreds of millions of years to avoid chemical and biological degradation. How to overcome this reluctance isn’t well enough understood yet to design efficient and cost-effective pre-treatments.

5)      Pretreatment reactors are made of expensive materials to resist acid and alkalis at high temperatures for long periods.  Cheaper reactors or low acid/alkali biomass is needed.

6)      To create value added products, ways to biologically, chemically, and mechanically split components off (fractionate) need to be figured out.

7)      Corn mash needs to be thoroughly sterilized before microorganisms are added, or a bad batch may ensue. Bad batches pollute waterways if improperly disposed of. (Patzek Dec 2006).

Cellulosic Ethanol Showstoppers

1)      The enzymes used in cellulosic biomass production are too expensive.

2)      An enzyme that breaks down cellulose must be found that isn’t disabled by high heat or ethanol and other end-products, and other low cost enzymes for specific tasks in other processes are needed.

3)      If these enzymes are found, then cheap methods to remove the impurities generated are needed. Impurities like acids, phenols, alkalis, and salts inhibit fermentation and can poison chemical catalysts.

4)      Catalysts for hydrogenation, hydrgenolysis, dehydration, upgrading pyrolysis oils, and oxidation steps are essential to succeeding in producing chemicals, materials, and transportation fuels. These catalysts must be cheap, long-lasting, work well in fouled environments, and be 90% selective.

5)      Ethanol production needs major improvements in finding robust organisms that utilize all sugars efficiently in impure environments.

6)      Key to making the process economic are cheap, efficient fermentation organisms that can produce chemicals and materials. Wald writes that the bacteria scientists are trying to tame come from the guts of termites, and they’re much harder to domesticate than yeast was.  Nor have we yet convinced “them to multiply inside the unfamiliar confines of a 2,000-gallon stainless-steel tank” or “control their activity in the industrial-scale quantities needed” (Wald 2007).

7)      Efficient aerobic fermentation organisms to lower capital fermentation costs.

8)      Fermentation organisms that can make 95% pure fermentation products.

9)      Cheap ways of removing impurities generated in fermentation and other steps are essential since the costs now are far too high.

What could be done?

According to Catherine Kling, head of the Resource and Environmental Policy Division of the Center for Agricultural and Rural Development at Iowa State University, “A large part of the problem with runoff of nitrogen (and soil) is beause corn is known as a “leaky crop” because nutrients inevitably leak out because the land is bare half of each year. “Farmers could plant cover crops so that the land is not bare for 6 months. They could change how they till. Or wetlands could be created carefully and strategically in a watershed so that they would capture the nutrients coming off the fields and process them before they move down to rivers and streams. “There are bioreactors. There are tile drains. There are a number of different things that can be done.” But none of these things is done, she noted. She suggested that nothing is done because it is costly and there is no reason for an individual producer to do it. The externality is not priced. There are few regulations or requirements, and hence there is the predictable situation where too many nutrients are coming off this land. Experts believe that a 40 to 50 percent reduction in nutrients will be needed to achieve reductions in the hypoxic zone, and this would require not just one or two changes being made, Kling said, but rather widespread adoption of multiple practices. “We’d need a major change in what that landscape looks like.” (Institute of Medicine 2014).

Don’t hold your breath.  Farmers have known what to do for decades — textbooks on soil conservation go back for 80 years — but the Free market and Capitalism are all about maximizing profits NOW, and screw the children, grandchildren, and 100 billion people that will be born in the future.

References

Al-Kaisi, Mahdi. July 24, 2000. Soil Erosion: An agricultural production challenge. Integrated Crop Management. Iowa State University.

Al-Kaisi, Mahdi. 2001. Impact of Tillage and Crop Rotation Systems on Soil Carbon Sequestration. Iowa State University.

Al-Kaisi, Mahdi. May 2001. Soil Erosion, Crop Productivity and Cultural Practices. Iowa State Univ.

Andrews, S.  Feb 22, 2006. Crop Residue Removal for Biomass Energy Production:  Effects on Soils and Recommendations. USDA-Natural Resource Conservation Service.

Atchison, J. et al. 2004. Innovative methods for corn stover collecting, handling, storing and transporting.  NREL.   

Badger, P. 2002. Processing Cost Analysis for Biomass Feedstocks. DOE/ EERE.

Bain, R.; Amos, W. March 2003. Biopower Technical Assessment: State of the Industry and Technology. National Renewable Energy Laboratory   NREL/TP-510-33123

Ball, B. C. et al. 2005. The role of crop rotations in determining soil structure and crop growth conditions. Canadian Journal of Soil Science 85(5):557-577.

Barrionuevo, A. 8 Oct 2006. A Bet on Ethanol, With a Convert at the Helm. New York Times.

Barrionuevo, A. 23 Jan 2007. The Energy Challenge.  Springtime for Ethanol.  New York Times.

Barta, P. et al. Dec 5, 2006. As Alternative Energy Heats Up, Environmental Concerns Grow. Crop of Renewable ‘Biofuels’ Could Have Drawbacks. Wall Street Journal.

Benemann, J; Augenstein, D. August 16, 2006. Whither Cellulosic Ethanol? The Oil Drum.

Benton, M. 2003. When Life Nearly Died. The greatest mass extinction of all time. Thames & Hudson.

Birger, J. Oct 31, 2006, McCain’s farm flip. The senator has been a critic of ethanol. That doesn’t play in Iowa. So the Straight Talk Express  has taken a detour. Fortune.

Birrell, S. et al. 2006. Biomass Harvesting, Transportation and Logistics. Growing the Bioeconomy conference. Iowa State University.

Blanco-Canqui, H.; et al. 2006. Rapid Changes in Soil Carbon and structural properties due to stover  removal from no-till corn plots.   Soil Science. Volume 171(6) 468-482.

BOA (Board on Agriculture). 1986. Soil Conservation: An Assessment of the National  Resources Inventory, Volume 2. National Academies Press.

Borgman, D. 4 Jan 2007. John Deere bio-fuels white paper.  Agriculture, bio-fuels and striving for greater energy independence. John Deere Company.

Bright, C. 1998. Life Out of Bounds. Bioinvasion in a Borderless World. W.W.Norton.

Bucknell III, H. 1981. Energy and the National Defense.  University Press of Kentucky.

Calviño, V; et al. 2003. Corn Maize Yield as Affected by Water Availability, Soil Depth, and Crop                 Management. Agronomy Journal 95:275–281

Clayton, Mark. 23 Mar 2006.  Carbon cloud over a green fuel. An Iowa corn refinery, open since                 December, uses 300 tons of coal a day to make ethanol. Christian Science Monitor.

Consumer Reports. Oct 2006. The ethanol myth: Consumer Reports’ E85 tests show that you’ll get cleaner  emissions but poorer fuel economy … if you can find it.

Crawford, D. Feb 2006. Natural gas has eight years left. Republic News..

Cruse, R. et al. 2006. Water Quality and Water Quantity Are they significant issues in the bioeconomy? Growing the Bioeconomy conference. IowaStateUniversity.

Deluca, T. 23 June 2006. Letters. Science, Vol 312 p 1743-1744.

Diamond, J. 2004. Collapse:  How Societies Choose to Fail or Succeed. Viking.

Dias De Oliveira, M. et al. July 2005. Ethanol as Fuel: Energy, Carbon Dioxide Balances, andEcological Footprint. BioScience 55, 593.

DOE Billion Ton Vision. April 2005. Biomass as feedstock for a Bioenergy and Bioproducts Industry: The technical feasibility of a billion-ton annual supply. USDA.

DOE 1980. Standby Gasoline Rationing Plan. U.S. Department of Energy Economic Regulatory Administration Office of Regulations and Emergency Planning

DOE Biomass Plan. 31 Aug 2005. Multi Year Program Plan 2007-2012. U.S. Department of Energy.

Office of the Biomass Program.  Energy Efficiency and Renewable Energy. 

DOE Feedstock Roadmap.  Nov 2003. Roadmap for Agriculture Biomass Feedstock Supply in the United States.  DOE Office of Energy Efficiency & Renewable Energy Biomass Program.   

ERS (Economic Research Service). 1999. Conservation on Rented Farmland: A Focus on U.S. Corn     Production. Agricultural Outlook/Jan-Feb. USDA.

FAO. 2004. Crop Water Information. Food and Agriculture Organization of the United Nations.

Farrell, et. al. Jan 27, 2006. Ethanol Can Contribute to Energy and Environmental Goals. Science Vol 311 506-508.

Feinstein, D. 2003. Senator Feinstein Offers Amendment to Give States Ability to Choose Whether they Participate in the Ethanol Program.

Fingerman, K; Kammen, D, et al. Integrating Water Sustainability into the Low Carbon Fuel Standard. University of California, Berkeley

Fisher, D. et al. Apr 2001. The Nitrogen Bomb. Discover magazine.

Franzleubbers, A. J.; et al. 2006. Agricultural Exhaust: A Reason to Invest in Soil. Journal of Soil and Water Conservation. Vol.61-3; 98-101

Gerard, Jack. 2006. Annual Meeting American Chemistry Council, Louisiana Chemical Industry Alliance

Giampietro, M. et al. 1997. Feasibility of large-scale biofuel production. BioScience 47(9): 587-600.

Glennon, R. 2002. Water Follies. Groundwater Pumping and the Fate of America’s Fresh Waters.   Island Press.

Grandy, A. S.; et al. 2006 Do Productivity and Environmental Trade-offs Justify Periodically Cultivating No-till Cropping SystemsAgronomy Journa.98:1377–1383.

Hall, C, et al. 20 Nov 2003. Hydrocarbons and the Evolution of Human Culture. Nature 426:318–22.

Haney, D. 2006. Emerging Trends: Transportation Needs for Biofuels, Bioproducts, and the Bioeconomy. Biobased Industry Outlook Conference. Ames, Iowa.

Harte, John. Professor of Energy and Resources, UC Berkeley. Private communication.

Heller, M. et al. 2000. Life-Cycle Based Sustainability Indicators for Assessment of the U.S. Food System. University of Michigan.

Hemenway, T. 2000. Gaia’s Garden.  Chelsea Green.

Hightower, J. 1978. Hard Tomatoes, Hard Times: A report of the Agribusiness Accountability Project on the Failure of America‘s LandGrantCollege Complex. Schenkman Books.

Hirsch, R. 2005. Peaking of World Oil Production: Impacts, Mitigation, & Risk Management. DOE NETL.

Huber, P. 10 Apr 2006. The Forest Killers. Forbes.

Institute of Medicine. The Nexus of Biofuels, Climate Change, and Human Health: Workshop Summary. Washington, DC: The National Academies Press, 2014.

Jackson, W et al. 1980. Impacts on the Land in the New Age of Limits. Land report #9:20.

Jacobson, Mark. May 9, 2006. Addressing Global Warming, Air Pollution Health Damage, and Long-Term  Energy Needs Simultaneously. Dept of Civil & Environmental Engineering, Stanford University.

John Deere. 2006. Biodiesel fuel in John Deer Tractors. Services and Support.

Johnson, J; et al. 2004. Characterization of Soil Amended with the By-Product of Corn Stover         Fermentation. Soil Sci. Soc. Am. J. 68:139–147.

Johnson. J.M.F, et al. 2005. Greenhouse gas contributions and mitigation potential of agriculture in the central USA.  Soil and Tillage Research 83:73-94.

Johnson, J. D. et al. 2006. A matter of balance: Conservation & renewable energy. J. Soil Water Cons. 61:120A-125A.

Jones, T. Oct 2006. The Scoop On Dirt Why We Should all Worship the Ground We Walk On.  Emagazine.com

Jordan, J. et al. 2 Jul 2006. The False Hope of Biofuels. For Energy and Environmental Reasons, Ethanol Will Never Replace Gasoline. Washington Post.

Karlen, D. 2006. Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Belt Locations. Agronomy Journal 98: 484–495.

Kirschenmann, F.  6 Feb 2007. Potential for a New Generation of Biodiversity in Agroecosystems of the Future. Agron J 99:373-376

Klee, G. 1991. Conservation of Natural Resources. Prentice Hall.

Lal, R. 1998. Soil erosion impact on agronomic productivity and environmental quality. Critical Reviews in Plant Sciences, 17: 319-464.

Lal, R. 11 June 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science Vol 304: 1623-1626

Lavelle, M. 4 Feb 2007. Is Ethanol the Answer? Politically it’s a winner. But experts aren’t sure ethanol can deliver on its promise.  U.S. News & World Report.

Lee, J.L. et al. 1996. Sensitivity of the USCorn Belt to climate change and elevated CO2: II. Soil erosion and organic carbon. Agric. Systems 52: 503–521.

Lilley, Sasha. 1 Jun 2006. Green Fuel’s Dirty Secret. Corpwatch.com

Lowdermilk, W. 1948. Conquest of the Land through Seven Thousand years. USDA-SCS.

Luoma J. 1999. The Hidden Forest. The biography of an ecosystem. Henry Holt.

Lynas, M. 2007. Six Degrees: Our Future on a Hotter Planet. HarperCollins.

Mann, L., et al. 2002. Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion.Agriculture, Ecosystems and Environment, 89: 149-166.

McAloon, A et al. Oct 2000.  Determining the cost of producing ethanol from cornstarch and          lignocellulosic feedstocks. NREL.

McCain, John. November 2003. Statement of Senator McCain on the Energy Bill: Press Release.

Meadows, D. et al.  2004. The Limits to Growth: The 30 year update. Chelsea Green.

Miranowski, J. Feb 1984. Impacts of Productivity Loss on Crop Production and Management in a Dynamic Economic Model.  American Journal of Agricultural Economics, Vol. 66/#1:61-71.

Monbiot, George. 6 Dec 2005.  The most destructive crop on earth is no solution to the energy crisis.  The Guardian.

Montenegro, M. 4 Dec 2006. The Big Three. The numbers behind ethanol, cellulosic ethanol, and biodiesel in the U.S.  Grist.

Nelson, R.G. 2002. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States – rainfall and wind-induced soil erosion methodology. Biomass and Bioenergy 22: 349-363.

NRCS (National Resources Conservation Service). Apr 2004. National Resources Inventory 2002. USDA

NRCS. 2006. Conservation Resource Brief. Feb 2006. Soil Erosion. USDA, Natural Resources Conservation Service.    Land use.

Odum, Howard T. 1996. Environmental Accounting.  EMERGY and Environmental Decision     Making. John Wiley & Sons.

Olmstead, J. 5 Dec 2006. What About the Land? A look at the impacts of biofuels production, in theU.S. and the world.  Grist.

Olson, K. et al. 1988. Effects of soil erosion on corn yields of seven Illinois soils. Journal of Production Agriculture. Vol 1, 13-19.

O’Neal, M. et al. 2005.  Climate change impacts on soil erosion in MidwestUnited States with changes In crop management. Catena 61:165-184.

Opie, J. 2000. Ogallala: Water for a Dry LandUniversity of Nebraska Press.

Oxfam. 2001. Going against the Grain.

Padgitt, M. et al. Sep 2000. Production practices for major crops in U.S. Agriculture, 1990-97. Resource Economics Division, Economic Research Service, USDA.

Pate, Dennis. June 10, 2004. May Rains Cause Severe Erosion in Iowa. Natural Resources Conservation Service.

Patzek, T. 2005. “The United States of America Meets the Planet Earth“. National Press Club Conference, Washington, D.C.

Patzek, T. The Earth, Energy, and Agriculture. June 2006. Climate Change and the Future of the American West. Boulder, Colorado

Patzek, T. Nov 5, 2006. Why cellulosic ethanol will not save us.  Venturebeat.com

Patzek, T. 26 Jun 2006.   “The Real Biofuel Cycles,” Letter to Science, Science and “The Real Biofuel Cycles,” Online Supporting Material to Science 312).  

Patzek, T. Dec 2006. A Statistical Analysis of the Theoretical Yield of Ethanol from Corn Starch. Natural Resources Research, Vol 15/4.

Pearce, F. 2013. The Land Grabbers: The New Fight over Who Owns the Earth. Beacon Press.

Pennisi, E. 2004. The Secret Life of Fungi. Science. Vol 304:1620-1623

Perlack, R., et al. 2002. Assessment of options for the collection, handling, and transport of corn stover. U.S. DOE, EERE.

Perlin, J. 1991. A Forest Journey: The Role of Wood in the Development of Civilization. HarvardUniversity Press

Pimentel, D. 1995. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science. Vol 267. 1117-1123.

Pimentel, D., Kounang, N. 1998. Ecology of Soil Erosion in Ecosystems. Ecosystem 1: 416-426.

Pimentel, D. et al. 1991. Land, Energy, and Water.  The Constraints Governing Ideal U.S. Population Size. Negative Population Growth

Pimentel D. 2003. Ethanol fuels: Energy balance, economics and environmental impacts are negative. Natural Resources Research. 12:127–134.

Pimentel, D. et al. March 2005. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower.  Natural Resources Research, Vol 14:1

Pimentel, David. Feb 2006. Soil Erosion: A Food and Environmental Threat. Journal Environment,  Development and Sustainability. Volume 8, Number 1, 119-137

Pimentel, D. et al. Nov 2006. Editorial: Green Plants, Fossil Fuels, and Now Biofuels. American Institute of Biological Sciences.

Pimentel, D. 2007. private communication.

Pollan, M. 2006. The Omnivore’s Dilemma. Penguin Press.

Ponting, C. 1993.  A Green History of the World: The Environment and the Collapse of Great Civilizations.  Penguin Books.

Power, J.et al. 1998. Residual effects of crop residues on grain production and selected soil properties. Soil Science Society of America Journal 62: 1393-1397.

Power, J. et al. 1988. Role of crop residue management in nitrogen cycling and use. Cropping Strategies for Efficient Use of Water and Nitrogen. ASA Special Publication 51.

Powers, B, and Berman, A. 2013. Cold, Hungry and in the Dark: Exploding the Natural Gas Supply Myth.  New Society Publishers.

Powers, S. May 2005. Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer Used for Corn, Soybean, and Stover Production.  NREL.

Raghu, S. et al. 22 Sep 2006. Adding Biofuels to the Invasive Species Fire? Science: 1742

Redlin, B. et al. 2007. The 2007 Farm Bill: Stewardship, Prosperity and Fairness. Izaak Walton League

Reynolds, R. Jan 15, 2002. Infrastructure requirements for an expanded fuel ethanol industry.  Oak Ridge National Laboratory Ethanol Project.

Reijnders, L. 2006. Conditions for the sustainability of biomass based fuel use. Energy Policy 34:863–876

Roberts, P. 2004. The End of Oil. Houghton Mifflin.

Rohter, L. Dec 12, 2004. South America Seeks to Fill the World’s Table. New York Times

Rorabaugh, W.J. 1979. The AlcoholicRepublic: An American Tradition.  Oxford University Press.  74-89.

Ruth, M. et al. May 4, 2003. The Effect of Corn Stover Composition on Ethanol Process Economics. NREL

Sacramento Bee. April 29, 2007. Editorial: Can’t drink ethanol. Sacramento Bee Forum E6.

Sadras, V. 2001. Quantification of Grain Yield Response to Soil Depth in Soybean, Maize, Sunflower, and Wheat. Agronomy Journal 93:577-583.

ScienceDaily. Mar 8, 2007. Petroleum Biofuels: An Advisable Strategy?  Univ Autonoma de Barcelona.

Sampson, R. 1981. Farmland or Wasteland. A time to choose. Overcoming the threat to America’s farm  and food future.  Rodale Press.

Schertz, D. et al. 1989. Effect of past soil erosion on crop productivity in Indiana. Journal of Soil and Water Conservation. Vol 44, no 6. 604-608.

Shapouri, H. et al. 2002.  The Energy Balance of Corn Ethanol: an update. USDA Agricultural economic report 813

Sheehan, J. et al. 2003. Energy and Environmental Aspects of Using Corn Stover for Fuel Ethanol. Journal of Industrial Ecology, Vol 7 3-4: 117-146.

Shurson, J., et al. 2003. Value and use of ‘new generation’ distiller’s dried grains with solubles in swine diets. Dept of Animal Science, University of Minnesota, St. Paul, Minnesota. Alltech 19th International Feed Industry Symposioum Proceedings.

Singer, E. Apr 03, 2007. A Better Biofuel.  MIT Technology Review.

Sluiter, A. et al. 2000. Compositional variability among corn stover samples. NREL.

Smil, V. 2000. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food                 Production.  MIT Press.

Smith, C. 1911. Rotations in the Corn Belt. Yearbook of the Dept of Agriculture.

Sullivan, Preston. May 2004. Sustainable Soil management. Soil Systems Guide. ATTRA.

Sundquist, B. 6 May 2005.  Topsoil Loss — Causes, Effects, and Implications: A Global Perspective.  The Earth’s Carrying Capacity.   Chapter 3

SWCS (Soil and Water Conservation Society). 2003. Conservation implications of climate change: Soil erosion and runoff from cropland.  Soil and Water Conservation Society, Ankeny, IA.

Tapparo, et. al. 31 Jan 2012. Assessment of the Environmental Exposure of Honeybees to Particulate Matter Containing Neonicotinoid Insecticides Coming from Corn Coated Seeds. Environmental Science & Technology.

Tegtmeier, E, et al. 2004. External Costs of Agricultural Production in the United States. International Journal of Agricultural Sustainability Vol 2/1

Tilman, D. et al. 8 Dec 2006. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland  Biomass.  Science.  Vol 314 no 5805:1598 – 1600

Tomson, B. 8 Feb 2007. For Ethanol, U.S. May Boost Corn Acreage. Wall Street Journal.

Trenkle, A. 2006. Integration of Animal Agriculture with the Bioeconomy. Department of Animal Science, Iowa State University

Trimble, S. et al. 14 July 2000. U.S. Soil Erosion Rates–Myth and Reality. Science vol 289: 248-250

Troeh, F, et al. 2005. Soils and Soil Fertility, 6th edition. Blackwell Publishing.

Ulgiati, S. 2001. A comprehensive energy and economic assessment of biofuels: When “green” is not                 enough. Critical Reviews in Plant Sciences 20(1): 71-106.

U.S. Census Bureau. 2000. Annual Projections of the Total Resident Population. Population  Division

USDA-ARS. Wind Erosion Research.

USDA ERS (Economic Research Service). Fertilizer Use. U.S. Fertilizer Imports/Exports

Vogel, K; et al. 2002. Switchgrass Biomass Production in the MidwestUSA:Harvest and Nitrogen                 Management. Agronomy Journal 94:413–420.

Wall Street Journal Editorial. Apr 15, 2002. A Stealth Gas Tax.  Wall Street Journal.

Wallace, Scott. Jan 2007.  Last of the Amazon.  National Geographic.

Ward, M. Jan 2007. Is Ethanol for the Long Haul? Scientific American.

Ward, P. 18 Sep 2006. Impact from the Deep. Strangling heat and gases emanating from the earth and sea, not asteroids, most likely  caused several ancient mass extinctions. Could the same killer-greenhouse conditions build once again? Scientific American.

Wardle, D. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629-1633.

Washington Post Editorial. Apr 16, 2002. Ethanol’s Ambitions. Washington Post.

Whitney, G. 1994. From Coastal Wilderness to Fruited Plain. Cambridge University Press.

Wilhelm, W. et al. Jan-Feb 2004. Crop and Soil Productivity Response to Corn Residue Removal:A Literature Review.  Agronomy Journal. Vol 96 No 1. 1-17

Williams, J. 2000. Fuel and Famine: Rural Energy Crisis in The Democratic People’s Republic of Korea. IGCC Policy paper, University of California.

Williams, M. 2003. Deforesting the Earth: from prehistory to global crisis. University of Chicago Press.

Wolfe, D. 2001. Tales from the Underground. A Natural History of Subterranean Life. Perseus Publishing.

Wu, L. 1998. Screening Study for Utilizing Feedstocks Grown on CRP Lands in a Biomass to Ethanol                 Production Facility.   National Renewable Energy Laboratory.

WWF (World Wildlife Fund). July 2005. WWF Action for Sustainable Sugar.

Yates, A. et al. 2006. No-till cultivation improves stream ecosystem quality.

Journal of Soil and Water Conservation. Vol 61:1 14-19.

Yacobucci, B. 2006. Fuel Ethanol: Background and Public Policy Issues. CRS Report for Congress.

Shorter versions of this have been published in the following books:

1) Jacqueline Langwith, ed. 2008.  “Opposing Viewpoints: Renewable Energy, vol. 2.” Greenhaven Press.

2) Sheila Newman, ed. 2008. “The Final Energy Crisis”. Pluto Press.

Many thanks to David Pimentel, Walter Youngquist, and Tad Patzek for their editing and critiques.

Some recent books on this topic.

Mario Giampietro. 2009. The Biofuel Delusion. The fallacy of Large scale Agro-biofuels production.

Posted in Alternative Energy, Biofuels, Energy, Not Sustainable | Leave a comment

Lester Brown on Water shortages, Climate Change, Soil Erosion, Decreasing Crop Yields

Institute of Medicine. The Nexus of Biofuels, Climate Change, and Human Health: Workshop Summary. Washington, DC: The National Academies Press, 2014.

BIOFUELS AND THE WORLD FOOD ECONOMY

The session’s first speaker was Lester Brown, founder and president of the Earth Policy Institute and one of the world’s best-known environmental analysts.

He spoke on the importance of biofuels in the world food economy.

Food Demand Issues

Last year, Brown began, 129 million tons of grain were converted into ethanol in the United States, and because there are about 400 million tons of grain produced in the country each year, that means that the share going to biofuels is roughly 30%. The amount of grain going to biofuels production exceeded the amount of grain being used to feed livestock and poultry. “We are now diverting more grain to fuel than to feed.”

To put the 129 million tons into perspective, Brown pointed out that this is more grain than Russia produces in total. “So, we have taken out of the food/feed economy a chunk of grain, variety of factors are making it difficult for farmers to keep up with the record growth in the demand for grain.

The four most important are water shortages, climate change, soil erosion, and hitting the ceiling on grain yields.

“Water shortages aren’t entirely new, but water shortages on the scale we are seeing today are unique.”

Half of the world’s people live in countries where water tables are falling as a result of overpumping, including the 3 major grain producers: China, India, and the United States.

“The World Bank estimates that in India, 175 million people are being fed with grain produced by overpumping,” he said. “My estimate for China is 130 million.”

In the United States, the irrigated areas in California and Texas, the country’s 2 largest agricultural states, are steadily shrinking, Brown said. In Texas, that is mostly because the wells are going dry. Many of the wells there rely on the Ogallala Aquifer, which is a fossil aquifer. In California, the shrinkage is partly due to wells going dry, but part of the reason is that substantial irrigation water is being diverted to cities.

And for the first time, there is a sub-region of the world with declining grain production as a result of water shortages; the Arab Middle East, including Iraq, Jordan, Saudi Arabia, Syria, and Yemen. In those countries, grain production is not only falling, but falling at a fairly substantial rate because the wells are going dry.

In Saudi Arabia, much of the pumping has come from a fossil aquifer, and it is almost gone now. “As it goes, so will their wheat production go.”

With the second major factor affecting food supply—climate change—there is still much that is not known, Brown commented.  A recent study that drew on data from hundreds of counties in the United States indicates that a 17% decline in grain yields for each 1° Celsius rise in temperature is likely.

The root of the issue lies in the relationship between temperature and photosynthesis. As temperature rises, Brown said, so does photosynthesis— but only up to 68°Fahrenheit (F). From 68°F degrees to 95°F, the photosynthesis remains constant, and above 95°F it begins to drop. Once the average temperature reaches 104°F, plants go into thermal shock and photosynthesis stops. Thus, he said, as the world’s average temperature edges up, it will affect grain yields adversely, unless the problem can be somehow offset through plant breeding, which researchers are now trying to do.

Climate change will bring other changes as well, such as changes in rainfall patterns. “The main point,” Brown said, “is that the agricultural system that we have now evolved over an 11,000-year period of rather remarkable climate stability. Now, suddenly, the climate system is changing.” Farmers no longer know exactly what to expect and do not have enough information to do long-term planning.

A third factor affecting food supply is soil erosion. The world is seeing more soil erosion than at any time in history. The United States experienced a dust bowl in the 1930s. To get it under control, farmers turned some of the land back into grasslands and instituted a variety of farming practices designed to minimize soil erosion. When the Soviet Union experienced a similar problem in the late 1950s, they reacted in a similar way.

“There are now two dust bowls forming in the world,” Brown said, “both far larger than either the one in the United States in the 1930s or the one in Russia in the late 1950s.” They are in northern China and the African Sahel. Indeed, the entire northern part of China is becoming a huge dust bowl. Rather than overplowing, however, the main reason is overgrazing. “The vegetation is simply being destroyed,” he said. China has about the same grazing capacity as the United States, but it has far more animals. Although both countries have close to 100 million head of cattle, the United States has only 9 million sheep and goats, while China has 284 million. “They are literally just destroying the vegetation throughout northern China,” Brown said. The government seems politically unable to deal with the problem, because of the potential unrest that would be caused by trying to reduce flocks to a sustainable level.

The fourth factor affecting food supply is that grain yields seem to have reached a point where it will be very difficult to increase them much more. In Japan and South Korea, rice yields were rising for decades. “Suddenly, about 15 years ago, they stopped rising and they have been flat as a pancake since then,” Brown said. China is just now reaching the same yields that Japan has, and unless China can take its rice yields beyond those in Japan—which Brown doubts will happen— that country is also about to hit a ceiling on rice yields. In Europe, wheat yields in the three major producers—France, Germany, and the United Kingdom—have all been flat now for more than a decade. “In none of these countries that have hit the glass ceiling, has anyone been able to break out of it,” Brown said, “because they are being boxed in by the limits of photosynthesis itself. Unless someone can figure out a process that is more efficient than photosynthesis or somehow modify photosynthesis, which is not an easy thing, we are going to have to face the reality of more and more agriculturally advanced countries hitting these glass ceilings.”

What can be done?

Stabilize population, which will go hand in hand with eradicating poverty. “There are millions of women in the world today who want to plan their families, but who do not have access to family planning services,” Brown said. “Just getting them the services they want would take care of much of the population growth in the world today.”

Posted in Dieoff, Drought, Food, Global Warming, Overshoot | Leave a comment

Have Cash by Nicole Foss July 3, 2010

Since we at The Automatic Earth generally tell people to hold cash or cash equivalents, it makes sense to expand on that a little, and to point out some of the location-specific risks of doing so.

We tell people to hold cash because that is what they will need access to in order to make debt payments and to purchase the essentials of life in a society with little or no remaining credit. The value of cash domestically – in terms of goods and services in your own local area – is what matters most.

Domestic currency value relative to other currencies internationally will be very much a secondary concern for most people, as the ability to exchange one currency for another is not likely to last far into the coming era of capital controls. Currency risk is likely to become very large, and almost everyone will be better off holding whatever passes for cash wherever they happen to be.

As the price of goods and services fall, thanks to the destruction of purchasing power brought about by collapsing money supply, what cash you still have will go a lot further in terms of, say, milk and bread. Capital preserved as liquidity will go a long way. However, there are NO no-risk scenarios. Apart from the obvious risks of fire, flood and theft, other risks to holding cash will grow over time. Liquidity can be as hard to hold on to as it sounds.

One particular risk is the reissuing of currency. Russia did this during the economic collapse of the Soviet Union, and made it so difficult for ordinary people to convert old currency into new that much of the middle class lost their life-savings. In Russia trust in relation to banks was not particularly high, hence there was a lot of money under the beds of the nation that the powers-that-be were attempting to flush out. That is not the case in present day industrialized countries, where people generally believe that banks are safe and deposits are publicly guaranteed in any case.

On top of that, few people have savings, having become dependent on access to cheap credit for their rainy-day funds. There is virtually nothing under the beds of the Western nation, and so essentially nothing to flush out.

Although that particular rationale for currency reissue does not really exist (the flushing out of hidden wealth), there may be other reasons for doing so, and these will be locational. The risk of currency reissue in the US is likely to be low for some time. The US is likely to benefit from capital flight from other places, on a knee-jerk flight to safety.

In addition, dollar-denominated debt deflation will increase demand for dollars, and hence increase their value. This should reduce pressure for any kind of radical currency reform for a while. If the US does eventually reissue its currency, I would imagine them doing so in order to deprive foreign holders of dollars of purchasing power. There are very large numbers of dollars held overseas, and these would not be able to be exchanged in a currency reissue. At some point this may serve the interests of the US, but not soon.

The situation in Europe is far more complex, and the risk is likely to vary between European countries. The reason is that the euro is less of a single currency than it is a strong currency peg. Whereas in the US the primary loyalty is to the political unit that issues the currency, in Europe the primary loyalty is to a lower level political unit. Currency values are grounded in relationships of trust, and the disparity between primary loyalty and currency control suggests that this essential component is weak in Europe. Where trust is weak, common currencies are also weak and my have a limited lifespan.

I think it very likely that the eurozone will decrease in size over the next few years, as the countries of the periphery find the austerity measures they are forced to live with increasingly intolerable. The social divisions that will widen as austerity measures are applied locationally will have greater and greater effects. Europe has a long history of conflict, with each country feeling that the natural extent of its own sphere of influence is whatever is was at its maximum past extent. This means that they all overlap on a continent with a long history of imperial rise and fall.

Emotional responses to past events still run very deep in Europe, even where those events were hundreds of years ago. This is a recipe for balkanization once there is no longer enough to go around. Witness for instance the ridiculous marching season in Northern Ireland, which exists to rub the noses of the catholic population in a defeat (the Battle of the Boyne) from several centuries past. That sort of behaviour is grotesque and should be an outright anachronism in a modern Europe, yet it persists, and there are other comparable examples (see for instance the reaction of Serbian people to the anniversary of the Battle of Kosovo Polye).

All common currency zones define zones of predation, that is: define the regions that feed an imperial centre. The current European periphery includes such nations as Greece, Spain, Portugal, Ireland and all of Eastern Europe. It may also include Italy and the Netherlands, as both of these areas have major debt issues (housing bubbles and national debt). It would also include the UK in a sense, despite the fact that the UK is not part of the single currency. The UK is an international financial centre of considerable stature, but has an enormous debt problem and very few visible means of support going forward, once North Sea oil and gas cease to provide revenues and the City of London takes an inevitable knock-out blow.

I would expect the eurozone to be composed of a much smaller number of countries in the future than it is now, as peripheral countries are driven to the brink and beyond. The risk of currency reissue in these countries is therefore significantly elevated in comparison with the US, for instance. Where that risk is higher, there will be greater impetus for moving from cash to hard goods sooner rather than later. In places where that risk is smaller, one may wait longer for the price of hard goods to fall and therefore spend less on them. Where that risk is larger, the wait should be shorter, even though that would mean paying more, so long as debt is still not part of the equation.

Short term bonds (the primary cash equivalent) are not really an option in Europe the way they are in the US. The shortest term available is measured in years rather than months, which could easily be too long. This means that Europeans will face harder choices on this front as well. I would suggest that Europeans afraid of facing a currency reissue should consider the value of hard goods sooner rather than later. As always, pooling resources can get you further own the list of recommended priorities than you could possibly hope to achieve on your own (ie hold no  debt, hold cash and cash equivalents and gain control over the essentials of your own existence).

Everyone will need to make the transition from cash to hard goods at some point. Cash is what you need to navigate the great deleveraging, but over the time the risks to cash will rise and you will need to think of the next phase, which is addressing the risk of the kind of economic upheaval that breaks supply lines. That will come first, and inflation (ie actual currency printing) will come much later. Inflation is only a risk once the power of the bond market has been broken, and that is not today’s risk, nor tomorrow’s.

That is something to consider much further down the line. Deflation and depression are mutually reinforcing in a spiral of positive feedback. That is not a dynamic that will end quickly, but end it will some day. At that point, or well before depending on where you live, you will want to be fully invested in hard goods.

Posted in automaticearth, Nicole Foss | Leave a comment

Fannie & Freddie started the mortgage crisis

Reckless Endangerment. How outsized ambition, greed, and corruption led to Economic Armageddon

2011 by Gretchen Morgenson and Joshua Rosner

This book makes the case that Fannie & Freddie started the mortgage crisis and then Wall Street got in on the game and enormously magnified the scale of the corruption and damage of the bubble.

Some reviews of this book in: the New York Times, USA Today, and the Washington Post.

Ilargi at theautomaticearth July 13, 2010

Fannie and Freddie are the main cause why home prices in the US have risen so high that millions of Americans are being evicted from their homes as we speak simply because they can’t afford to live in them anymore. Fannie and Freddie (and the FHFA and FHLB and Ginnie Mae) have been used to guarantee any mortgage at any price and at any liar’s conditions, and all at the risk of the American people.

Charles Hugh Smith sums it up very well, read it a few times, I’d recommend, though he’s got the time-frame wrong. It’s not the con of the decade, it’s the largest financial con ever perpetrated on the American people since 1776:

The Con of the Decade Part I

1. Enable trillions of dollars in mortgages guaranteed to default by packaging unlimited quantities of them into mortgage-backed securities (MBS), creating unlimited demand for fraudulently originated loans.

2. Sell these MBS as “safe” to credulous investors, institutions, town councils in Norway, etc., i.e. “the bezzle” on a global scale.

3. Make huge “side bets” against these doomed mortgages so when they default then the short-side bets generate billions in profits.

4. Leverage each $1 of actual capital into $100 of high-risk bets.

5. Hide the utterly fraudulent bets offshore and/or off-balance sheet (not that the regulators you had muzzled would have noticed anyway).

6. When the longside bets go bad, transfer hundreds of billions of dollars in Federal guarantees, bailouts and backstops into the private hands which made the risky bets, either via direct payments or via proxies like AIG. Enable these private Power Elites to borrow hundreds of billions more from the Treasury/Fed at zero interest.

7. Deposit these funds at the Federal Reserve, where they earn 3-4%. Reap billions in guaranteed income by borrowing Federal money for free and getting paid interest by the Fed.

8. As profits pile up, start buying boatloads of short-term U.S. Treasuries. Now the taxpayers who absorbed the trillions in private losses and who transferred trillions in subsidies, backstops, guarantees, bailouts and loans to private banks and corporations, are now paying interest on the Treasuries their own money purchased for the banks/corporations.

9. Slowly acquire trillions of dollars in Treasuries–not difficult to do as the Federal government is borrowing $1.5 trillion a year.

This part hasn’t happened yet, but still could:

10. Stop buying Treasuries and dump a boatload onto the market, forcing interest rates to rise as supply of new T-Bills exceeds demand (at least temporarily). Repeat as necessary to double and then triple interest rates paid on Treasuries.

11. Buy hundreds of billions in long-term Treasuries at high rates of interest. As interest rates rise, interest payments dwarf all other Federal spending, forcing extreme cuts in all other government spending.

12. Enjoy the hundreds of billions of dollars in interest payments being paid by taxpayers on Treasuries that were purchased with their money but which are safely in private hands.

Posted in Mortgages | Leave a comment

Tax avoidance

8% of the global financial wealth of households is held in tax havens, 75% of which goes unrecorded

Gabriel Zucman. July 6, 2013.

Posted in Tax Avoidance | Leave a comment

A book review of “Russia’s Food Policies and Globalization”

by Alice Friedemann

Wegren, Stephen K.  Russia’s Food Policies and Globalization. 2005. Lexington Books.

Governments that can’t feed their people lose their legitimacy and risk widespread social unrest.  The Russian government has made many mistakes in the past, such as with collectivization (which America has also done by policies that discouraged family farms in favor of mono-cropping industrial large-scale farming).  Russia has also had to cope with a very harsh climate, which has always affected production.

But because of the hard times for centuries, Russians are more prepared than highly functional, industrialized societies like America or Europe, because when times have gotten tough, many of Russia’s citizens have had access to garden plots.  In the 1980s, households that grew food consumed 90% of it and sold the other 10%.

Although the USSR modernized in fertilizer, machinery, food distribution, and post-harvest technology somewhat from 1964 to 1982, farms still had all kinds of shortages.  Large farms couldn’t fire drunks and slackers, nor hang onto skilled and hard-working laborers.  Adding to the confusion, over eleven different ministries oversaw food production.

The main Russian food policy for many decades has been to protect urban dwellers from the true cost of food, to the detriment of the rural sector.  Over 80% of subsidies to agriculture went to keeping the price of food in cities down.  Meanwhile the country had 100 million people, but only 10% of the electricity, no access to the gas network, poor roads, schools, medical services and so on.

Yet food production went up on average, though there were long lines, poor quality, and little selection in the cities due to an inadequate food distribution system.  But still, the USSR fed itself most of the time.

At the state controlled level, large farms mainly produced the grain, flax, sugar, beets, sunflower seeds, and a lot of the meat, milk, eggs, and wool, but only half of the vegetables and a quarter of the potatoes.

In the 1990-1991 food crisis, there was rationing and people resorted to buying very expensive food in the farmers markets that sprang up in cities.  From 1991 to 2002 food production went down 35-40% yet the population only went down 2.5%.  Food production went down and prices went up because less land was cultivated, less fertilizer and pesticide were used, there was more manual labor, and less farm equipment (especially since spare parts were expensive or not available), increased fuel, electricity, and transportation costs.  The years from 1992 to 1998 were the worst.  By 2002, 45 million families grew food on an average of 1 acre (up from half an acre in 1990).  By 1998, households produced 59% of the food grown (the ruble, not calorie value).

Rural families produced 46% of their food, in urban areas families could only provide 9%.  During this time the number of cattle and pigs went down to numbers lower than in 1943.

After price liberalization in 1992, inflation reached 2,600%, and again went up 900% in 1993.  Food prices skyrocketed.  A third of Russians were undernourished.  Hunger was prevalent among older people without sufficient pensions.  Food went from a third to half of urban budgets initially, and then as food production went up, down to 40% in 2000.  But low income families still experienced hunger and malnutrition.  The wealthier were still able to afford to eat meat.

In the worst year, 1998, rural people got a third of their food from what they could grow on their private plots – 3,216 calories per capita vs 2,612 for urbanites, as well as more protein and fat.  Rural people also had more bread, potatoes, vegetables, milk and milk products, and sugar than city dwellers did.

Among rural people, the wealthiest sold more of their home grown food and had more land than the poorer families.  The top 5% of families produced by far the most meat and fruit – the most expensive, valuable food to sell to cities.

The poor remained poor. They consumed all they grew, so they couldn’t sell extra food to accumulate capital to buy more land.

The average private plot of land was about 2100 square feet.  Men spent 10.5 hours and women 8.5 hours per week working the family plot, mainly for family food and not for sale from the 1960s through the 1980s.  In 1991 that acreage went up when 38 million put new plots on nearly 32,000 square miles of land.

Prices really needed to go up in urban areas to reflect the true cost of food production, but the government was so afraid of “social tension” that it wasn’t until April of 1991, for the first time in several decades, that prices went up.  Meat prices went up 200%, dairy 130%, eggs 100%, and bread 200%. But wages went up too.  Bread was subsidized until 1993.

From 1972 to 1991 the USSR accounted for 75% of USA agricultural exports of grain.  The USSR has never exported much food.  In 1991, 28% of Russian food was imported.

Some experts considered the food crisis starting in 1991 to be mainly due to the lack of post-harvest food handling facilities, because for about 6 years, the amount of grain lost to not being stored properly equaled the amount imported.

Grain is one of the most politically sensitive of all food products in the USSR because of the importance of bread in the culture, and even greater in the 90s when the standard of living dropped.

The cost of food went up an average of 5% per week in 1992 and 3% per week in 1993.  The feared social disorder didn’t happen because

1)      Moscow and Leningrad continued to get food – it was the 2nd and 3rd echelon cities that suffered

2)      Before the crash even successful people in the USSR could buy very little with their money, so few worked hard.  When high prices hit, so did the opportunities to make more money, and the appearance of luxury goods that hadn’t been available before, so people hoped that if they worked hard they could someday afford to buy expensive goods.

3)      There was still social protection.  Ceilings on price markups and profits from bread and flour were imposed.  Even in 2000, half of all Russian regions placed controls on prices of primary foods.

Cities like Kostroma were very innovative in coping with the crisis.  The city rented land from landowners and large farms for the poor to grow potatoes on.. The city also rented municipal land to grow food on at very low rates.  Those working on farms could buy their meals and groceries “at cost”, and at the next step up the food chain, food processing, employees could buy food at very little markup.  Restaurant employees got their main meal of the day at a discount.

Food expanded the use of barter – food could be traded for services, debt payments, and so on.  Stalls, kiosks, and urban markets selling food sprang up in new places.

In some regions, the local or regional government gave farmers fertilizer, oil, seed, and so on to grow grain but then insisted on a low price, often too low, to make sure their people had food, or sold the grain at a profit to other regions.   As state government control of agriculture decreased, regional control increased to make sure there was enough food for the people living in the region.  By 1999, 20 regional food markets existed with 30 more regions in the process of doing the same.

Russian oil and gas companies invested in food processing after the 1998 financial crash, which helped food processors recover.

Wheat was especially valued due to its nonperishable nature and in some respects became a substitute currency.  Growers used wheat as barter in 16% of transactions in 1995 and 25% in 1997.

Not much food was sold on commodity exchanges, only 3.3% of the wheat crop was sold this way in 2002.

Many advocated for vertical processing of food, with processors owning the farms, but this isn’t happening much, when it does, it’s in the Moscow or Leningrad area where consumers have greater purchasing power and money to invest.

Families growing a fair amount of wheat, meat, and other food often preferred to sell to the local government or a private company rather than directly to the public because they didn’t have enough time, surplus labor, or contacts to find buyers.

Despite all the pressure to go to a “market economy”, regional governments distrusted “the market” and regulated agriculture heavily to be sure people were fed.  Even in the worst times in 1998, the government made sure that they won the bids to distribute food – controlling food is a good way to stay in power.  This upset some political factions in the USA – we’d sent a lot of food over there and didn’t want this to aid the old guard in maintaining their power.

This book spends a lot of time explaining the history of food in Russia, because it’s trying to explain why it isn’t likely food will be exported from Russia in vast amounts any time soon.  Currently regional governments restrict how much food can be sold outside of the region to other regions within Russia to make sure their people are fed.  Farmers like this protection because they’re paid more since they’re protected them from outside competition.  There are 16 regions that forbid any export of food beyond their borders.  Governments, by lending them money for oil and other farm inputs can insist on this.

So opportunities for Wall Street and Russian capitalists to make lots of money from exporting Russian food globally is not a good way to grow rich now.  Plus Russia’s agricultural production is still low compared to USA or Europe because they’re less mechanized, experience fuel shortages, and have greater production costs.  Their scientists estimate that the biological potential of the agricultural land is 2.5 times less than the USA or EU on average.  So agriculture is protected – just as it is in the USA and EU with subsidies.

In the highest circles of government, Russians would prefer to have food security over importing cheap food and fight to continue to protect Russian agriculture, but it’s a delicate balance since they don’t want to have food prices so high that citizens can’t afford it – so the government helps the bottom 25-35% below the poverty line afford food.

The problems of the large farms – mainly the politics and bureaucracies that oversaw them, were so awful it’s amazing any food was ever produced

Posted in Agriculture, Russia | Leave a comment

The need for trust

Beyond the Trust Horizon 

Oct 1, 2010  Nicole Foss   theautomatic earth

Relationships of trust are the glue that holds societies together. Trust takes a long time to establish, and much less time to destroy, hence societies where trust is wide-spread, particularly for long periods of time, are relatively rare. In contrast, societies where trust does not extend beyond the family, or clan, level are very common in history.

The spread of trust is a characteristic of expansionary times, along with increasing inclusion, and a weakening of the ‘Us vs Them’ divide. Essentially, the trust horizon expands, both within and between societies. Over time it can encompass higher levels of organization – from family to community to municipality to region to nation and beyond – so long as the expansionary dynamic continues to support it.

Within societies this leads to relatively stable and (at least temporarily) effective institutions, and bolsters the development of the rule of law. The rule of law means that law constrains the powerful (more than usual), and there is a reasonable degree of legal transparency and predictability, so that people are prepared to trust in the fairness and accessibility of justice. Naturally, the ideal is never reached, human nature being what it is, but it can be approached under the most favourable of circumstances.

Within societies, trust also confers political legitimacy (ie a widespread buy-in as to the right of rulers to rule). Where there is legitimacy, there is relatively little need for surveillance and coercion. A high level of trust (all the way up to the level of national institutions) is thus a prerequisite for an open society.

Between societies, an expansion of the trust horizon tends to lead to political accretion. Larger and more disparate groups feel comfortable with closer ties and greater inter-dependence, and are prepared to leave past conflicts behind. The European Union, where 25 countries with a very long history of conflicts have come together, is a prime example.

However, all expansions have a limited lifespan, as do the benefits they confer. They sow the seeds of their own destruction, especially when they morph into a final manic phase and begin to hollow out the substance of social structures. Institutions, whether public or private, retain the same outward form, but cease to operate as they once did. For a while it is possible to maintain the illusion of business as usual (or effectiveness and accountability as usual), but not indefinitely. Everything is subject to receding horizons eventually, and trust is no exception.

Over time institutions become sclerotic, unresponsive, self-serving and hostage to vested interests, at which point they cannot be reformed, as the reform would have to come from those entrenched individuals who have benefited most from the status quo. Institutions become demonstrably less effective, while consuming more and more of society’s resources. Corruption, abuses of power, lack of accountability and the loss of the rule of law become increasingly evident, exactly as we have seen with unauthorized wire-tapping, extra-ordinary rendition and many other actions undermining the open society. Once this happens, trust is living on borrowed time. That is very clearly the case in many developed societies today.

Trust in existing organizational structures does not disappear overnight, but ebbs away as institutions decay or the extent of their corruption is revealed. The loss of trust from higher levels of organization undermines the fabric of a society now operating beyond the trust horizon. When trust contracts, socioeconomic contraction is just around the corner. Bank runs are a particularly good example of this. People are currently waking up to the extent of the recklessness, irresponsibility and self-serving short-termism of the banking system, and realizing that reliance on top-down human promises is far riskier than they had supposed. When they cease to trust in those promises, they will are very likely to vote with their feet.

Societies in this position lose a critical pillar of support – the collective acceptance of their people. Governing institutions lose legitimacy, at which point the cost of governance increases significantly, because where there is no trust, resource-intensive surveillance and coercion develop instead. Our societies in the developed world, where institutional decay is well underway, stand on the brink of such a transition.

Where resources are scarce, as they will be soon enough, the diversion of a larger percentage of what remains towards this purpose will aggravate that scarcity considerably. This will further anger people, which is likely to lead to a downward spiral of mutual provocation and recrimination. Most of us have not seen this vicious circle of human sentiment to any great extent, but this is the natural consequence of the collapse of trust.

On the way down, as on the way up, there are effects both within and between societies, as the ‘Us vs Them’ dynamic sharpens once again. ‘Us’ becomes ever more tightly defined, and ‘Them’ becomes an ever more pejorative term. The result is division between disparate groups of people within a society, for instance the unionized and non-unionized, the haves and the have-nots, or different religious or ethnic groups. When there is a paucity of trust, and not enough resources to go meet highly inflated expectations, the risk of conflict is very high. Previously formed political accretions are at a high risk of coming unglued as they will no be longer supported by trust. The European Union should take note.

Between societies, where the existing range of divisive parameters is likely to be much larger, and where there may be a past history of conflict, the risk of conflict flaring up again rises significantly. This is especially likely if societies attempt to deflect blame for the situation they find themselves in towards other nationalities.

We are already seeing evidence of the growing anger, and the change it will usher in as the trust horizon shrinks. In the US, the Tea Party movement is the most obvious example. All major change comes from the ground-up, where the power of the collective is expressed in ways that either support or undermine the actions and intentions of central authorities. It is the interaction between the power of the collective and central authority that determines where a society will head.

The Tea Party movement is a ground-swell of public anger, very much in the tradition of major transformative grass-roots initiatives. It is exactly what one would expect to see at the brink of a collapse in the trust horizon – a movement grounded in negative emotion that both stems from a loss of trust and in turn acts to aggravate it in a self-reinforcing positive feedback loop. The danger with such a movement manifesting such powerful negative emotions is that it will precipitate a major over-reaction to the downside, commensurate with the irrational exuberance we saw to the upside. The anger is largely unfocused, and where it is specific, it is not fully-informed.

The primary target of the Tea Party is big government, but this ignores a major part of the big picture. The abuses of power we have seen are not purely a manifestation of metastatic public authority, but an expression of corporate fascism – the blending and merging of public and private interests in social control. One look at the revolving door between the banking system (where banking law is written) and the US treasury should be enough to demonstrate this.

The Tea Party movement represents largely (but not solely) the unfocused anger of people who know they have suffered, or are about to suffer, substantial losses, but do not (typically) understand the system well enough to understand why. The movement is casting about for someone to blame, as such movements always do on the verge of a trust collapse. The danger is that someone with facile populist answers will come along, offering a target for the urgent desire to blame someone for what has happened and is happening.

This is already happening, as powerful funding sources and nascent populists circle around and seek to tap into the trend for their own purposes. It is absolutely to be expected that existing top-down power structures, or political opportunists with their own agenda, will seek to hijack bottom-up movements as they develop. My primary concern is that in doing so they will lay the foundation for a society attempting to live far beyond the trust horizon, and where there is no trust, and consequently no political legitimacy, there will be surveillance, coercion and repression instead.

It will be easy for movements grounded in negative emotion to gain a foot-hold in the coming environment, as this is very much where the collective mood will lie in the aftermath of a Ponzi collapse. Blame-games will be very tempting (and populists have their own prejudicial ideas as to who should be blamed). However, this would not be compatible with maintaining the constructive and cooperative mindset we need if we are to have a hope of avoiding an over-reaction to the downside that has the potential to magnify the impact of what is coming enormously.

Personally, I would like to encourage the development of a different kind of grass-roots momentum for change, along the lines of what is being developed (albeit not nearly quickly enough so far) by the Transition Towns movement and other comparable initiatives. The key advantages that this kind of approach has are two-fold – the scope of its component activities, based on relocalization, match where the trust horizon is headed, and its driving force is the desire to build rather than to tear down.

Working within the trust horizon is important, as it means individual small-scale initiatives can benefit from the same kind of social support at a local level that larger-scale ones once did at a societal level, when trust was more broadly inclusive. Local currencies work for exactly this reason. While the task will still be difficult, it has a chance of being achievable, especially where the necessary relationships of trust have been established before hard times set in. It is very much more difficult to build such relationships after the fact, but relationships built beforehand may actually strengthen when put to the test.

Trying to maintain a positive and constructive focus at the local level, where trust has a chance to survive, and perhaps even thrive in hard times, and to avoid being drawn into a blame-game, will be an uphill battle. It is nevertheless something we need to do as a society, if we are to have a chance to preserve as much as possible of who we are through what is coming.

Posted in automaticearth, Nicole Foss | Leave a comment

The Murderer Next Door: Why the Mind Is Designed to Kill

THE MURDERER NEXT DOOR: Why the Mind Is Designed to Kill, David M Buss

http://www.amazon.com/Murderer-Next-Door-Mind-Designed/dp/0143037056

[pp. 36-44] THE COMPETITIVE LEGACY OF OUR ANCESTORS

Every breath we take we owe to our ancestors-an unimaginably long and unbroken line of forebears who managed to survive all of the Darwinian “hostile forces of nature.” We tend to think of evolutionary competition as the “survival of the fittest,” as the struggle of animals to survive the challenges presented by a harsh environment. Those who failed to find food or avoid predators, those who succumbed to disease or became riddled with parasites, hit the evolutionary dust. This much is obvious.

What is less obvious is that the process of evolution by natural selection is played out through generations, and the key to the long-term outcome is reproductive competition. The winners in evolutionary terms are not only those who themselves survive, hut those who manage to reproduce most successfully: those who have the most heirs who are healthy and go on to have heirs of their own. This competition to reproduce successfully is a key driving force in our lives, and the competition can he quite fierce. In each generation, there are a fixed number of reproductively viable women and men available to mate with. The dating market makes it quite clear that some mates are much more desirable than others. As the saying goes, all the good ones are taken. Each man and woman is ultimately in competition with other men and women for “shares” of the ancestry of the next generation.

We are all obviously descendants of those who succeeded in this reproductive competition. As the descendants of those who succeeded, we modern humans carry with us the remarkably beneficial components of body and designs of mind that helped our ancestors prevail.

The fierce evolutionary competition that has shaped us leads, if we will follow, to a theoretical insight both subtle in nature and profound in implication. Analysts of human nature have either failed to recognize it or have recoiled from its disturbing implications. In the intensely competitive game of reproductive competition, through the eons murder has been a remarkably effective method of achieving evolutionary success. Of course, as we became civilized, all human societies developed laws against murder, and in our contemporary lives, murdering carries the threat of harsh punishment. So murder is now a more costly strategy for defeating mating rivals than it must have been in our distant past. Through the long years of human evolution, however, killing would have been a highly effective means of vanquishing rivals and ensuring that the mate we selected passed on our genes and not another’s. From a man’s perspective, killing a rival’s mate strips him of an invaluable and possibly irreplaceable reproductive resource. Killing his children can snuff out his genetic future entirely. Vanquishing an entire group of rivals through mass murder or genocide opens new vistas for the killers and their children to flourish.

It may seem coldhearted to talk about killing as adaptive or murder as advantageous, but if we consider the nature of reproductive competition humans have faced over the long time spans of our evolution, then we can appreciate just what an edge in that evolutionary competition killing would have provided. The benefits of killing, in an evolutionary sense, must be momentous and manifold, because, on the other side, the negative reproductive consequences of being killed are so profound.

No newspaper is likely to carry the headline “Scientists Discover That It’s Bad to Be Dead.” We know this. Getting murdered, however, turns out to be far worse, evolutionarily, than we have probably realized.

Bear with me as I play out the many aspects of this critical insight. To start with, being killed cuts off all avenues for the unfortunate victim’s genes to be passed on. Never again will a male homicide victim court, attract, or seduce another woman. Never again will the victim make love with his wife. All potential sexual encounters with strangers, all potential liaisons with mistresses, are forever terminated. Every future act of mating, and hence every future opportunity for reproduction, is permanently extinguished. But that’s merely the beginning.

The victim’s wife, if he has a partner, now becomes eligible for mating with other men. No longer can the dead man fend off former friends or current enemies who attempt to charm her. Another man may now sleep in his bed, caress his wife’s skin, and impregnate her. All of his mating losses become potential reproductive gains for other men. But the costs of getting killed get worse still.

The homicide victim’s children now become frighteningly vulnerable. The victim is no longer around to help raise them and see them through life’s countless hurdles. He can no longer protect them from beatings, sexual abuse, or homicide at the hands of strangers or stepfathers. His children also risk losing his wife’s parental attentions if she remarries, which may get rechanneled to children she has with her new husband.

To compound these costs, given the calculus of evolutionary competition, the murder victim’s losses become potential gains for eager competitors. His elimination from the status hierarchy opens a niche for a rival to ascend. The children of his antagonists will thrive in competition against his children, who now become hampered by their father’s death. His entire kin group is weakened and made vulnerable by his death. In short, the costs of getting killed cascade to one’s children, grandchildren, great-grandchildren, and the victim’s entire extended family: Simultaneously, the victim’s costs become his rival’s benefits in this ruthless competitive struggle. The eternity of darkness that comes with premature death may he accompanied by the abrupt end of an entire genetic line.

If this view of the competitive motives behind human nature seems severe, consider the following story from a study of the Ache Indians of Paraguay, South America, one culture that may provide a glimpse into what our ancestral culture was like.

Among the Ache, meat is a scarce and prized resource. Although gathered berries, nuts, and plant foods are shared only within families, the Ache share meat from the hunt communally. Hunters deposit their kill to a central “distributor,” who then allocates portions to different families, based largely on family size. Good hunters enjoy great status, and groups strive to keep good hunters happy, but, surprisingly, skilled hunters do not garner a larger share of the communal meat. They benefit from their greater-than-average contributions in two ways. First, the group provides extraordinary health care and solicitude to the children of good hunters. These children enjoy being groomed and tended-group members take the time to feed them, remove splinters from their feet, and nurse them to health when ill. Second, skilled hunters are highly attractive to Ache women. It’s not uncommon for an accomplished hunter to indulge in a mistress or two on the side. These benefits, however, cause conflict.

One day a fight broke out between two Ache men, a skilled hunter and an average hunter. The conflict arose over a woman-a sexual infidelity discovered by the less adept man, who challenged his rival to an ax fight. The husband lost; he ended up dead, felled by the blade of his more athletic rival. Within a matter of days, the group convened to decide the fate of the dead man’s thirteen-year-old son. The fact that he now lacked a father meant that he would he a net drain of resources on the group. The group made a decision. The dead man’s son must die. The death of the father, in short, caused the group to kill the son. There’s a lesson here-dead men can’t protect their children. This case starkly demonstrates the costs of murder for the victim’s kin.

So it’s astonishingly bad to be dead. And on the flip side, it’s also astonishingly advantageous to get a rival out of the way. Consider just a few of the specific benefits our ancestors could have secured by killing other human beings:

* Preventing injury, rape, or death to oneself, spouse, or kin

* Eliminating a crucial antagonist

* Acquiring a rival’s resources or territory

* Securing sexual access to a competitor’s mate

* Preventing an interloper from appropriating one’s own mate

* Cultivating a fierce reputation to deter the encroachment of enemies

* Avoiding investment in genetically unrelated children (stepchildren)

* Protecting resources needed for reproduction

* Eliminating an entire lineage of reproductive competitors

Of course, many of us never come close to killing someone, and that’s true for several reasons. One is that, as we’ve become more civilized as a species, we’ve developed more and more effective deterrents against murder, both through our legal systems and through our cultural conditioning-though, as we found in our study of homicidal fantasies, most of us do contemplate the idea of murdering at some point in our lives. Another force inhibiting us from committing murder comes from our evolutionary heritage. As the motivations to murder evolved in our minds, a set of counter-inclinations also developed. Killing is a risky business. It can be dangerous and inflict horrible costs on the victim. Because it’s so had to he dead, evolution has fashioned ruthless defenses to prevent being killed, including killing the killer. Potential victims are therefore quite dangerous themselves. In the evolutionary arms race, homicide victims have played a critical and unappreciated role-they paved the way for the evolution of antihomicide defenses.

Thanks to these antihomicide defenses, it’s often far too costly to kill. In attempting to kill, you become vulnerable yourself. The intended victim’s friends and relatives might rush to his defense. From the killer’s perspective, even if he survives and succeeds in carrying out the kill, he risks ostracism or banishment. We usually don’t want killers in our midst, and neither did our ancestors, although in a confrontation with a hostile group, killers come in quite handy.

That we have such a rich repertoire of defenses against killers actually provides compelling evidence that murderers have been among us for a long enough time to have sculpted the human mind. just as our prominent fears of snakes betray an evolutionary history in which snakes posed a hostile threat to survival, our well-honed defenses against murderers reveals an evolutionary history in which homicidal humans have threatened survival.

Because of the deterrents and the dangers involved with murder, most potential killers opt for alternative solutions in contending with a rival. One strategy is to form alliances with others in a group-a tribe, a social group, at the workplace-attempting to form a critical coalition to oust the rival. A second is to befriend the rival, currying his favor, making him part of your coalition. A third is to denigrate the rival to others in an attempt to lower his reputation in their eyes, weakening his position and making him more vulnerable to displacement. A fourth strategy is to lie like a snake in the grass, hiding your time until a rival stumbles, and then making your move. And as you bide your time, a rare opportunity may arise. You may suddenly find all the stars aligning in a unique configuration. The costs of killing unexpectedly dwindle; the benefits abruptly loom large. Perhaps you happen upon your rival alone and unawares. Perhaps you can kill without being discovered. Perhaps you can actively arrange to create all of these conditions. You suddenly find yourself with the means, the motive, and the opportunity. And you seize the moment. Your psychological circuits for homicide become engaged.

Let’s step away from our own species for a moment so we can be more objective, and examine our close primate cousins the chimpanzees. Chimps and humans diverged from common gorilla ancestors roughly seven million years ago. Nonetheless, humans and chimps share roughly 99 percent of their genes. This means that, of the three billion base pairs strung out on the strands of our DNA, as many as ninety-nine out of every hundred are exactly identical. The differences, of course, are as important as the similarities. Humans are bipedal and have evolved language, and women have relatively concealed ovulation. Chimps brachiate (travel from branch to branch through trees) and communicate without language, and the females have periodic estrus with bright red genital swellings visible from a hundred feet. Nonetheless, because they are our closest primate relatives, observing their behavior can sometimes shed light on our own.

Consider an observation by anthropologists who were following a chimpanzee troop around the jungles of Tanzania. One sunny afternoon, eight chimpanzees, all males but one, roamed the border of their home range. Although they usually stayed within their home range, perhaps the chimps felt emboldened by the size of their group, protection afforded by numbers. Not far across the border, they detected a lone male. A chimp named Godi sat peacefully beneath a tree, eating ripe fruit in solitude. Godi, a member of the Kahama community, usually traveled with his group of six other males. This day he happened to be alone.

The second he saw the rival group, a jolt of adrenaline surged through his veins. He dropped his food, sprang to his feet, and bolted through the forest in the direction of his Kahama comrades. But the surprise ambush gave his attackers a timely advantage. His pursuers gave chase and surrounded him. In a flash, Godi was captured. Humphrey, one of the lead chimps, grabbed Godi’s leg, yanked him to the ground, and pounced on top of him. Using his full weight of 110 pounds, Humphrey pinned him to the ground. Godi struggled, but was no match for Humphrey and his six male compatriots, each of whom carried the strength equivalent of four Olympic athletes at the peak of conditioning. With Godi rendered helpless on the ground, the others now launched an assault. In a frenzy of screaming, they bit, pounded, and jumped on their helpless victim.

After ten minutes that seemed like an eternity, the attackers finally stopped. They left behind a body battered and bleeding from dozens of wounds. Godi did not die immediately, but he was never seen alive again. The killer chimps had seized a rare opportunity, perhaps one that would not come along again for many months.

We often think of human warfare as formal battles between declared enemies, but in traditional foraging societies, killing more often takes the form of a raid not unlike that witnessed among the chimpanzees. Anthropologist Napoleon Chagnon, who spent years observing the lives of a group of native peoples in Venezuela called the Yanomamö, observed one such raid.

The night before the raid, a man named Kaobawa stirred the men into an emotional frenzy. He began to sing, “I am meat hungry! I am meat hungry!” Another man screamed, “I’m so fierce that when I shoot the enemy my arrow will strike with such force that blood will splash all over … his household.” At dawn the next morning, the women presented the raiders with a large cache of plantains as food for their raid. The men covered their faces and bodies in black paint for concealment. The mothers and sisters of the warriors offered parting advice, such as “Don’t get yourself shot up.” The women then wept, fearful for the safety of their men. The trek to reach their enemies was long and took several days. At night, the raiding party built fires to keep warm, but on the last night, this luxury had to be eliminated for fear of alerting the enemy.

Back at the home camp, the women grew nervous. Unprotected women risk being kidnapped by neighboring tribes, and even allies cannot be trusted.

The raiding party broke into two groups, each consisting of six men. This grouping allowed them each group would lie in wait toto retreat under protection: two men from to ambush potential pursuers. They struck. The attacking party managed to shoot one of their enemies with a poison-tipped arrow. The raiders then fled. One of the raiders was wounded as they escaped to their home camp, but he survived to go on a future raid. The foray had been a success. They killed one member of the enemy group and escaped with their lives, just like the chimps of Tanzania.

Killing, of course, is ordinarily not a first-line solution, even when your own life is on the line. When threatened by a weapon-bearing intruder who has broken into your home, you would be as likely to hide or flee as to go on the attack. The ancient phrase “fight or flight” captures two of the most important defenses available to us. The shields we’ve developed to stop killing have evolved alongside the mental mechanisms that provide the impulse to kill. Unfortunately, the process of coevolution, whereby new adaptations have developed to counter those defenses, has created a vicious cycle from which there is no escape. Even as we’ve developed defense mechanisms, we’ve also developed ever-more-effective means of killing.

Typically, coevolutionary arms races occur between two different species of which one is predator and the other prey, or between parasites and hosts. As predators pick off slower and less agile prey, the remaining prey and their descendants evolve to be faster and more skilled at evading capture. Then the prey’s improved evasion abilities create greater selection pressure on the predators-the slow predators fail to eat and so die off, and the faster ones give birth to a higher percentage of speedy progeny. Each increment in the skills of one species leads to increments in the abilities of the other. The two species are locked in an endless escalating cycle from which neither can escape.

Coevolutionary arms races also occur within a single species, and this remarkable process has occurred in our species with the evolution of homicide strategies and murder-prevention defenses. As natural selection fashioned defenses against getting murdered by other humans, it simultaneously created more intricate killing strategies to evade these defenses. As potential victims evolved to detect homicidal intentions, potential killers evolved the ability to deceive and surprise victims, to disguise their homicidal designs. Our ancestors evolved to live in groups that afforded defense against marauding males. At the same time, they evolved recruitment tactics designed to increase the size of their killing coalitions.

One time-honored recruitment tactic for increasing coalitional size that we’ve read about in the news lately is to exploit men’s desire for women. Mohamed Atta, one of the main architects of the 9/11 terrorist attacks, was unlucky in love. His recruiters instilled in him the belief that he would spend his afterlife surrounded by “women of Paradise” (from an assassins’ manual found in Atta’s luggage), “youths of never-ending bloom,” and “companions with big beautiful eyes like pearls within their shells . . .” (from the Quran, about the rewards of becoming a martyr). The promise of prestige and the pledge of young women are powerful methods of coalitional recruitment. From the inner-city gangs of New York and Los Angeles to religious jihads, men are motivated to kill to gain these rewards. A relentless coevolutionary arms race in the human struggle for life, liberty, and the pursuit of progeny continues today.

Can this evolutionary-competition theory of murder really account for the motivations for murder in our present times? As I will reveal in the rest of the book, this theory does a remarkable job of accounting for the statistical patterns we find in who kills whom and for the multiple motives for murder. The more I analyzed the psychology of killing in cases of actual murder and in homicidal fantasies, the more striking was the realization that so many murders follow from the intense pressures of mating-a topic explored in the next chapter.

Posted in Violence | Leave a comment

Energy Slaves

Many people have taken a crack at estimating how much muscle power the energy contained within oil represents.  Although each comes up with different results, they all show how powerful oil is and how angry our descendants will be that we wasted it driving around in 3,000 pound cars for pleasure…

Wiki definition: An Energy Slave is that quantity of energy (ability to do work) which, when used to construct and drive non-human infrastructure (machines, roads, power grids, fuel, draft animals, wind-driven pumps, etc.) replaces a unit of human labor (actual work). An energy slave does the work of a person, through the consumption of energy in the non-human infrastructure.

End results of how much muscle power to replace 1 barrel of oil (42 gallons)

Tad Patzek: 3 years of hard labor (8 hours a day 365 days). Powering the World: Offshore Oil & Gas Production U.S. Hydrocarbon Metabolism 2012

In France (which has a lower level of energy use than the United States) each citizen has 500 energy slaves according to How much of a slave master am I?

 

 

“Energy Slave” was first used by R. Buckminster Fuller in the caption of an illustration for the cover of the February 1940 issue of Fortune Magazine, entitled “World Energy”. Alfred Ubbelohde also coined the term, apparently independently, in his 1955 book, “Man and Energy”, but the term did not come to be widely used until the 1960s, and is generally credited to Fuller.

U.S. Hydrocarbon Metabolism

 

In one day an average U.S. resident consumes 4.2 gallons of oil equivalent, or a 1/10 of a barrel:

·         An average U.S. resident develops 100 W of power per 24-hour day

·         Let’s assume that he/she can work for 8 hours/day at 200 W on average

·         Then, 4.2 gallons of petroleum is equivalent to

      0.1 × 6.1 x 109 / 200 / 3600 / 8 = 106 days of labor

We would have to work hard for over 100 days to make up for what we consume as hydrocarbons in 1 day. One year of gorging on hydrocarbons is equal to 1 century of hard human labor.

Source: Tad Patzek Powering the World: Offshore Oil & Gas Production 2012.

Posted in An Overview | Leave a comment

Energy Primers

Professors and other energy experts have presentations that will help you understand our energy predicament.

Tad Patzek

Powering the World: Offshore Oil & Gas Production 2012

Agriculture/Biofuels/Contaminants/Ecology/Global Energy Supply Publications  1991-2012

Biofuel archive

 

Posted in An Overview | Leave a comment